


Lecture Notes in Computer Science 3819
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Pascal Van Hentenryck (Ed.)

Practical Aspects
of Declarative
Languages

8th International Symposium, PADL 2006
Charleston, SC, USA, January 9-10, 2006
Proceedings

13



Volume Editor

Pascal Van Hentenryck
Brown University
Dept. of Computer Science
P.O. Box 1910, Providence, RI 02912, USA
E-mail: pvh@cs.brown.edu

Library of Congress Control Number: 2005937161

CR Subject Classification (1998): D.3, D.1, F.3, D.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-30947-0 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-30947-5 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11603023 06/3142 5 4 3 2 1 0



Preface

This volume contains the papers presented at the Eighth International Sym-
posium on Practical Aspects of Declarative Languages (PADL 2006) held on
January 9-10, 2006, in Charleston, South Carolina. Information about the con-
ference can be found at http://www.cs.brown.edu/people/pvh/PADL06.html.
As is now traditional, PADL 2006 was co-located with the 33rd Annual Sympo-
sium on Principles of Programming Languages that was held on January 11-13,
2006.

The PADL conference series is a forum for researchers and practioners to
present original work emphasizing novel applications and implementation tech-
niques for all forms of declarative concepts. Topics of interest include, but are
not limited to:

– Innovative applications of declarative languages;
– Declarative domain-specific languages and applications;
– Practical applications of theoretical results;
– New language developments and their impact on applications;
– Evaluation of implementation techniques on practical applications;
– Novel implementation techniques relevant to applications;
– Novel uses of declarative languages in the classroom;
– Practical experiences.

This year, there were 36 submissions. Each submission was reviewed by at least
three Programme Committee members. The committee decided to accept 15
papers. In addition, the programme also included three invited talks by Erik
Meijer, David Roundy, and Philip Walder.

I would like to thank the Program Committee members who worked hard to
produce high-quality reviews for the papers, as well as all the reviewers involved
in the paper selection. It was a great pleasure to work with all of you. I also
would like to thank Gopal Gupta for his availability and his expert advice in
many aspects of the conference. We were also lucky to attract three outstanding
invited speakers and I would like to take this opportunity to thank them again
for accepting our invitation. Finally, thanks to Andrei Voronkov for his help with
the EasyChair system that automates so many of the tedious tasks involved in
chairing a conference.

October 2005 Pascal Van Hentenryck
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Using CHRs to Generate Functional Test Cases
for the Java Card Virtual Machine�

Sandrine-Dominique Gouraud and Arnaud Gotlieb

IRISA/CNRS UMR 6074,
Campus Universitaire de Beaulieu,

35042 Rennes Cedex, France
Phone: +33 (0)2 99 84 75 76 – Fax: +33 (0) 2 99 84 71 71

gouraud@lri.fr, gotlieb@irisa.fr

Abstract. Automated functional testing consists in deriving test cases
from the specification model of a program to detect faults within an
implementation. In our work, we investigate using Constraint Handling
Rules (CHRs) to automate the test cases generation process of functional
testing. Our case study is a formal model of the Java Card Virtual Ma-
chine (JCVM) written in a sub-language of the Coq proof assistant. In
this paper we define an automated translation from this formal model
into CHRs and propose to generate test cases for each bytecode defini-
tion of the JCVM. The originality of our approach resides in the use of
CHRs to faithfully model the formally specified operational semantics of
the JCVM. The approach has been implemented in Eclipse Prolog and
a full set of test cases have been generated for testing the JCVM.

Keywords: CHR, Software testing, Java Card Virtual Machine.

1 Introduction

The increasing complexity of computer programs ensures that automated soft-
ware testing will continue to play a prevalent role in software validation. In this
context, automated functional testing consists in 1) generating test cases from
a specification model, 2) executing an implementation using the generated test
cases and then 3) checking the computed results with the help of an oracle. In
automated functional testing, oracles are generated from the model to provide
the expected results. Several models have been used to generate test cases: al-
gebraic specifications [1], B machineries [2] or finite state machines [3], just to
name a few.

In our work, we investigate using Constraint Handling Rules (CHRs) to au-
tomate the test cases and oracles generation process of functional testing. Our
� This work is supported by the Réseau National des Technologies Logicielles as part

of the CASTLES project (www-sop.inria.fr/everest/projects/castles/). This
project aims at defining a certification environment for the JavaCard platform. The
project involves two academic partners: the Everest and Lande teams of INRIA and
two industrial partners: Oberthur Card Systems and Alliance Qualit Logicielle.

P. Van Hentenryck (Ed.): PADL 2006, LNCS 3819, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 S.-D. Gouraud and A. Gotlieb

specification model is written in a sub-language of Coq: the Jakarta Specifica-
tion Language (JSL) [4]. Coq is the INRIA’s proof assistant [5] based on the
calculus of inductive constructions that allows to mechanically prove high-order
theorems. Recently, Coq and JSL were used to derive certified Byte Code Veri-
fiers by abstraction from the specification of a Java Card Virtual Machine [4,6].
The Java Card Virtual Machine (JCVM) carries out all the instructions (or
bytecodes) supported by Java Card (new, push, pop, invokestatic, invokevirtual,
etc.). In this paper, we present how to generate test cases and oracles for each
JSL byte code specification. Our idea is to benefit from the high declarativity
of CHRs to express the test purpose as well as the JSL specification rules into a
single framework. Then, by using traditional CHR propagation and labelling, we
generate test cases and oracles as solutions of the underlying constraint system.
The approach has been implemented with the CHR library of Eclipse Prolog [7]
and a full set of test cases have been generated for testing the JCVM.

This paper is organised as follows: Section 2 introduces JSL and its execution
model; Section 3 recalls some background on CHRs; Section 4 introduces the
translation rules used to convert a formal specification written in JSL into CHRs;
Section 5 presents our algorithm to generate functional test cases and oracles for
testing an implementation of the JCVM; Section 6 describes some related works,
and finally Section 7 concludes the paper with some research perspectives.

2 The Jakarta Specification Language

The Jakarta Specification Language (JSL), as introduced in [8], is a first order
language with a polymorphic type system. JSL functions are formally defined
with conditional rewriting rules.

2.1 Syntax

JSL expressions are first order terms with equality (==), built from term vari-
ables and from constant symbols. A constant symbol is either a constructor
symbol introduced by data types definitions or a function symbol introduced by
function definitions.

Let C be a set of constructor symbols, F be a set of function symbols and V
be a set of term variables. The JSL expressions set is the term set E defined by:
E ::= V|E == E|CE∗|FE∗. Let var be the function defined on E → V∗ which
returns the set of variables of a JSL expression.

Each function symbol is defined by a set of conditional rewriting rules.
This unusual format for rewriting is close to functional language with pattern-
matching and proof assistant. These (oriented) conditional rewriting rules are of
the form l1 → r1, . . . , ln → rn ⇒ g → d where:

– g = fv1 . . . vm where ∀i, vi ∈ V and ∀i, j, vi �= vj

– li is either a variable or a function which does not introduce new variables:
for 1 ≤ i ≤ n, var(li) ⊆ var(g) ∪ var(r1) ∪ . . . ∪ var(ri−1)
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– ri should be a value called pattern (built from variables and constructors),
should contain only fresh variables and should be linear1:
for 1 ≤ i, j ≤ n and i �= j, var(ri) ∩ var(g) = ∅ and
var(ri) ∩ var(rj) = ∅

– d is an expression and var(d) ⊆ var(g) ∪ var(r1) . . . ∪ var(rn)

The rule means if for all i, li can be rewritten into ri then g is rewritten into d.
Thereafter, these rules are called JSL rules. JSL allows the definition of partial
or non-deterministic functions.

Example 1 (JSL def. of plus extracted from the JCVM formal model).
data nat = 0 | S nat.
function plus :=
〈plus r1〉 n → 0 ⇒ (plus n m) → m;
〈plus r2〉 n → (S p) ⇒ (plus n m) → (S (plus p m)).

2.2 Execution Model of JSL

Let e|p denote the subterm of e at position p then expression e[p ← d] denotes
the term e where e|p is replaced by term d.

Let R be a set of rewriting rules, then an expression e is rewritten into e′

if there exists a rule l1 → r1, . . . , ln → rn ⇒ g → d in R, a position p and a
substitution θ such as:

– e|p = θg and e′ = e[p ← θd]
– {θli →∗ θri}∀1≤i≤n where →∗ is the transitive cloture of →

Note that nothing prevents JSL specifications to be non-terminating or non-
confluent. However, the formal model of the JCVM we are using as a case study
has been proved terminating and confluent within the Coq proof assistant [4,6].

Example 2 (Rewriting of (plus 0 (plus(S 0) 0))).
(plus 0 (plus (S 0) 0))→r1 (plus (S 0) 0)→r2 (S (plus 0 0))→r1 (S 0)

3 Background on Constraint Handling Rules

This section is inspired of Thom Frühwirth’s survey and book [9,10]. The
Constraint Handling Rules (CHRs) language is a committed-choice language,
which consists of multi-headed guarded rules that rewrite constraints into sim-
pler ones until they are solved. This language extends a host language with
constraint solving capabilities. Implementations of CHRs are available in Eclipse
Prolog [7], Sicstus Prolog, HAL [11], etc.

1 All the variables are required to be distinct.
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3.1 Syntax

The CHR language is based on simplification where constraints are replaced
by simpler ones while logical equivalence is preserved and propagation where
new constraints which are logically redundant are added to cause further simpli-
fication. A constraint is either a built-in (predefined) first-order predicate or a
CHR (user-defined) constraint defined by a finite set of CHR rules. Simplification
rules are of the form H <=> G | B and propagation rules are of the form H ==>
G | B where H denotes a possibly multi-head CHR constraint, the guard G is a
conjunction of constraints and the body B is a conjunction of built-in and CHR
constraints. Each time a CHR constraint is woken, its guard must either succeed
or fail. If the guard succeeds, one commits to it and then the body is executed.
Constraints in the guards are usually restricted to be built-in constraints. When
other constraints are used in the guards (called deep guards), special attention
must be paid to the way guards are evaluated. Section 4.2 discusses the use of
deep guards in our framework.

Example 3 (CHRs that can be used to define the plus constraint).
R1 @ plus(A,B,R) <=> A=0 | R=B.
R2 @ plus(A,B,R) <=> A=s(C) | plus(C,B,D), R=s(D).
C @ plus(A,B,R) ==> plus(B,A,R).
The construction . . .@ gives names to CHRs.

3.2 Semantics

Given a constraint theory (CT) (with true, false and an equality constraint =)
which determines the meaning of built-in constraints, the declarative interpreta-
tion of a CHR program is given by a conjunction of universally quantified logical
formula. There is a formula for each rule.

If x̄ denotes the variables occurring in the head H and ȳ (resp. z̄) the variables
occurring in the guard (resp. body) of the rule, then

– a simplification CHR is interpreted as ∀x̄(∃ȳG→ (H ↔ ∃z̄B))
– a propagation CHR is interpreted as ∀x̄(∃ȳG→ (H → ∃z̄B))

The operational semantics of CHR programs is given by a transition system
where a state < G, C > consists of two components: the goal store G and the
constraint store C. An initial state is of the form < G, true >. A final state
< G, C > is successful when no transition is applicable whereas it is failed when
C = false (the constraint store is contradictory).

Solve. If C is a built-in constraint and CT |= (C ∧D) ↔ D′

Then < C ∧G, D > �→< G, D′ >
Simplify. If F <=> D|H and CT |= ∀(C → ∃x̄(F = E ∧D)

Then < E ∧G, C > �→< H ∧G, (F = E) ∧D ∧C >
Propagate. If F => D|H and CT |= ∀(C → ∃x̄(F = E ∧D)

Then < E ∧G, C > �→< E ∧H ∧G, (F = E) ∧D ∧ C >



Using CHRs to Generate Functional Test Cases for the JCVM 5

Rules are applied fairly (every rule that is applicable is applied eventually).
Propagation rule is applied at most once on the same constraints in order to
avoid trivial non-termination. However, CHR programs can be non-confluent
and non-terminating.

Example 4 (Several examples of the CHR solving process).
plus(s(0),s(0),R)

�→Simplify R2 plus(0,s(0),R1), R=s(R1)
�→Simplify R1 R1=s(0), R=s(R1)
�→Solve R=s(s(0))
The following example exploits the propagation rule of plus. Without this rule,
the term plus(M,s(0),s(s(0))) would be delayed.

plus(M,s(0),s(s(0)))
�→Propagate C plus(M,s(0),s(s(0))), plus(s(0),M,s(s(0)))
�→Simplify R2 plus(M,s(0),s(s(0))), plus(0,M,s(0))
�→Simplify R1 plus(M,s(0),s(s(0))), M=s(0)
�→Solve plus(s(0),s(0),s(s(0))), M=s(0)
�→Simplify R2 plus(0,s(0),s(0)), M=s(0)
�→Simplify R1 s(0)=s(0), M=s(0)
�→Solve M=s(0)

The following example shows the deduction of a relation (M = N):
plus(M,0,N)

�→Propagate C plus(M,0,N), plus(0,M,N)
�→Simplify R1 plus(M,0,N), M=N
�→Solve plus(M,0,M), M=N

4 JSL to CHR Translation Method

Our approach is based on the syntactical translation of JSL specifications into
CHRs. The translation method is described under the form of judgements.

4.1 Translation Method

There are three kinds of judgements: judgements for JSL expressions, judgements
for JSL rewriting rules (main operator →) and judgements for JSL functions
(main operator ⇒).

The judgement e � t � {C} states that JSL expression e is translated into
term t under the conjunction of constraints C.

variable(v)
v � v � {true}

constant(c)
c � c � {true}

e1 � t1 � {c1} . . . en � tn � {cn}
c e1 . . . en � c(t1, . . . , tn) � {c1, . . . , cn}

e1 � t1 � {c1} . . . en � tn � {cn}
f e1 . . . en � r � {c1, . . . , cn, f(t1, . . . , tn, r)}
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The judgement (e → p) � {C} states that the JSL rewriting rule e → p is
translated into the conjunction of constraints {C}.

(v → p) � {v = p}

e1 � t1 � {c1} . . . en � tn � {cn} p � p � {true}
(f e1 . . . en → p) � {c1, . . . , cn, f(t1, . . . , tn, p)}

The judgement (l1 → r1, . . . , ln → rn ⇒ g → d) � g′ ⇔ guard|body states that
the JSL function rule l1 → r1, . . . , ln → rn ⇒ g → d is translated into the CHR
g′ ⇔ guard|body where g′ is a CHR constraint associated to the expression g,
guard is the conjunction of constraints corresponding to the translation of the
rules li → ri, and body is a conjunction of constraints corresponding to the
translation of the expression d.

l1 → r1 � g1 . . . ln → rn � gn e � t � {B}
(l1 → r1, . . . , ln → rn ⇒ f v1 . . . vk → e)

� f(v1, . . . , vk, r)⇔ g1, . . . , gn|B, r = t.

Note that non-determinism, confluence and termination are preserved by the
translation as the operational semantics of CHRs extends the execution model
of JSL functions.

4.2 Deep Guards

In the translation method, we considered that CHR guards could be built over
prolog goals and CHR calls. This approach, which is referred to as deep guards,
has received much attention by the past. See [9,12] for a detailed presentation
of deep guards. Smolka recalls in [13] that ”deep guards constitute the central
mechanism to combine processes and (encapsulated) search for problem-solving”.
Deep guards are used in several systems such as AKL, Eclipse Prolog [7,9], Oz
[12] or HAL [11].

Deep guards rely on how guard entailment is tested in conditional constraints
and CHRs. Technically, a guard entailment test is called an ”ask constraint”
whereas a constraint added to the constraint store is called a ”tell constraint”
and both operations are clearly distinct. For example, if the constraint store
contains X = p(Z), Y = p(a) then a tell constraint X = Y where = denotes
Prolog unification, will result in the store X = p(a), Y = p(a), Z = a whereas
the corresponding ask constraint will leave the store unchanged and will suspend
until the constraint Z = a would be entailed or disentailed.

The current approach to deal with deep guards that contain Prolog goals
(but not CHR calls) consists in considering guards as tell constraints and check-
ing at runtime that no guard variable is modified. This approach is based on
the fact that the only way of constraining terms in the Herbrand Universe is
unification (=) and that the corresponding ask constraint of unification is well-
known: this is the “equality of terms” test (==). For example, if X = Y is a tell
constraint then X == Y corresponds to its ask constraint. However, when Prolog



Using CHRs to Generate Functional Test Cases for the JCVM 7

goals are involved into the guards, the guard entailment test is no more decid-
able as non-terminating computations can arise. Note that CHR programs are
not guaranteed to terminate (consider for example p <=> true|p). Even when
non-terminating computations are avoided this approach can be very inefficient
as possible long term computations in guards are executed every time a CHR
constraint is woken. An approach for this problem consists in pre–computing the
guard by executing the Prolog goal only once, and then testing entailment on
the guard variables.

When CHRs are involved into the guards, the problem is more difficult as
guards can set up constraints. In that case, considering guards as tell constraints
is no longer correct as wrong deductions can be made. Our approach for this
problem consists in suspending the guard entailment test until it could be de-
cided. More precisely, the guard entailment test is delayed until all the guard
variables become instantiated2. At worst, this instantiation arises during the
labelling process. Of course, this approach leads to fewer deductions at propa-
gation time but it remains manageable when we have to deal with deep guards
containing CHR calls.

4.3 Implementation of the Translation Method

We implemented the translation method into a library called JSL2CHR.pl. Given
a file containing JSL definitions, the library builds an abstract syntax tree by
using a Definite Clause Grammar of JSL, and then automatically produces equiv-
alent CHR rules. The library was used on the JSL specifications of the JCVM,
which is composed of 310 functions. As a result, 1537 CHRs were generated.

5 Tests Generation for the JCVM

This section is devoted to the presentation of both the JCVM specification model
and the test cases and oracle generation method. The experimental results we
obtained by generating test cases for the JCVM are presented in Section 5.3.

5.1 The Java Card Virtual Machine

Unlike other smart cards, a Java Card includes a Java Virtual Machine imple-
mented in its read-only memory part. The structure of a Java Card platform is
given in Fig.1. It consists of several components, such as a runtime environment,
an implementation of the Java Virtual Machine, the open and global platform
applications, a set of packages implementing the standard SUN’s Java Card API
and a set of proprietary APIs. A Java Card program is called an applet and
communicates with a card reader through APDU3 buffers.
2 This solution is close to the traditional techniques of coroutining in Prolog as im-

plemented by freeze or delay built-in predicates.
3 Application Protocol Data Unit is an ISO-normalised communication format be-

tween the card and the off-card applications.
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Hardware : CPU, cryptography cell
Hardware : CPU, cryptography cell

Applet Applet Applet...

Standard JavaCard API

java.lang

javacard.framework

javacard.security

javacardx.crypto

Oberthur Card Systems API

com.oberthurcs.javacard

com.oberthurcs.javacard.domain

com.oberthurcs.javacard.file

visa.openplateform

JavaCard Runtime Environment (JCRE)

JavaCard Virtual Machine

Open Plateform

Fig. 1. A Java Card platform

All the components of a Java Card platform must be thoroughly tested before
the Card would be released. But, in this paper, we concentrate only on the JCVM
functional testing process. In the formal model given in [14], the JCVM is a state
machine described by a small-step semantics: each bytecode is formalised as a
state transformer.

States modelling. Each state contains all the elements manipulated by a pro-
gram during its execution: values, objects and an execution environment for each
called method. States are formalised as a record consisting of a heap (he) which
contains the objects created during execution, a static heap (sh) which contains
static fields of classes and a stack of frames (fr) which contain the execution
environments of methods. States are tagged “Abnormal” if an exception (or an
error) is raised, “Normal” otherwise.

Bytecodes modelling. The JCVM contains 185 distinct bytecodes which can
be classified into the following classes[15]: arithmetic operations (sadd, idiv,
sshr, ...), type verifications on objects (instanceof, ...), (conditional) branch-
ing (ifcmp, goto, ...), method calls (invokestatic, invokevirtual, ...), oper-
ations on local variables (iload, sstore, ...), operations on objects (getfield,
newarray, ...), operations on operands stack (ipush, pop, ...) and flow modifiers
(sreturn, throw, ...).

Most of the bytecodes have a similar execution scheme: to decompose the
current state, to get components of the state, to perform tests in order to detect
execution errors then to build the next state. In the JSL formal model of the
JCVM, several bytecodes are specified with the similar JSL functions. They
only distinguish by their type which is embodied in the JSL function definition
as a parameter. As a result, the model contains only 45 distinct JSL functions
associated to the bytecodes. Remaining functions are auxiliary functions that
perform various computations. Some JSL functions calls other functions in their
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rewriting rules; this process is modelled by using deep guards in CHR, preserving
so the operational semantics of the JCVM.

Example of a JSL bytecode specification. As an example, consider the
JSL specification of bytecode push: given a primary type t, a value x and a
JCVM state st, push updates the operand stack of the first execution method
environment in st by adding the value x of type t:

function push :=
〈push r1〉 (stack f st)→ Nil
⇒ (push t x st)→ (abortCode State error st);

〈push r2〉 (stack f st)→ (Cons h lf)
⇒ (push t x st)→ (update frame(result push t x h) st).

push uses the auxiliary function stack f that returns the stack of frames
(environments for executing methods) of a given state.

function stack f :=
〈stack f r1〉 st→ (Jcvm state sh he fr) ⇒ (stack f st) → fr.

Example of CHR generated for a bytecode. The following CHRs were
produced by the library JSL2CHR.pl:

stack f r1 @ stack f(St,R) <=> St=jcvm state(Sh,He,Fr)
| R=Fr.

push r1 @ push(T,X,St,R) <=> stack f(St,nil)
| abortCode(state error(St),Ra), R=Ra.

push r2 @ push(T,X,St,R) <=> stack f(St,cons(H,Lf))
| result push(T,X,H,Res), update frame(Res,St,Ru), R=Ru.

In this example, the JSL function stack f was translated into a CHR although
it is only an accessor. As a consequence we get a deep guard in the definition
of CHR push. This could be easily optimised by identifying the accessors into
the JSL specification with the help of the user. However, we would like the
approach to remain fully automated hence we did not realized this improvement
and maintained the deep guards.

5.2 Test Cases and Oracles Generation Method

Our approach is inspired of classical functional testing where test cases are gen-
erated according to some coverage criteria. We proposed to generate test cases
that ensure each CHR would be covered at least once during the selection. We
call this criterion All rules. Note that this approach is based on two usual as-
sumptions, namely the correctness of the formal specification and the uniformity
hypothesis[1]. The uniformity hypothesis says that if a rule provides a correct
answer for a single test case then it will provide correct answers for all the test
cases that activate the rule. Of course, this assumption is strong and nothing
can prevent it to be violated but recall that testing can only detect faults within
an implementation and cannot prove the correctness of the implementation (as
stated by Prof. E. Dijkstra).
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Abstract test cases. In the JSL formal model of the JCVM, a test case con-
sists of a fully instantiated state of the VM and the valuation of several input
parameters. However, it happens that several values of the state or several pa-
rameter values remain useless when testing a selected bytecode. To deal with
these situations, the notion of abstract test case is used. In our case, an abstract
test case represents a class of test cases that activate a given JSL function or
equivalently a given CHR. The process which consists to instantiate an abstract
test case to actually test an implementation is called concretization [2] and can
be delayed until the test-execution time. For each CHR automatically generated,
the goal is to find a minimal substitution of the variables (an abstract test case)
that activate it. Covering a CHR consists in finding input values such as its
guard would be satisfied. Hence, a constrained search process over the guards
and the possible substitutions is performed. Before going to more details into
this process, consider the CHRs of bytecode push. To activate push r1, the states
stack St must be empty whereas to activate push r2, St must be rewritten into
cons H Lf (i.e. to posses at least one frame). Note that H, Lf, T and X are
not constrained and do not require to be instantiated in the abstract test case.
However, a randomised labelling can be used and to generate the two following
concrete test cases, written under the form of JSL expressions4:
(Bool, POS(XI(XO(XH))), Jcvm state(Nil, Nil, Nil)) and
(Byte, NEG(XH), Jcvm state(Nil, Nil, Cons(Frame(Nil, Nil, S(S(0)),
Package(0, S(0), Nil), T rue, S(0)), Nil))).

A constrained search process over the guards. As usual in constraint
programming, we would like to see the constraints playing an active role by
exploiting the relations before labelling (test-and-generate approach). Note that
this contrasts with classical functional testing techniques that usually instantiate
first the variables and then check if they satisfy the requirements (generate-and-
test approach).

Consider a CHR r : H ⇔ G|B where G = p1, . . . , pn. Satisfying the guard G
requires to satisfy at least one guard of the CHRs that define each predicate
pi of G, i.e. finding a valuation such as pi is simplified either in true or in
a consistent conjunction of equalities. When pi himself is a CHR call (deep
guards), then its guard and body are also required to be consistent with the rest
of the constraints. According to the All rules testing criterion, the constraint
store takes the following form:

∧
i

⎛
⎝∨

j

(guard(pi, j) ∧ body(pi, j))

⎞
⎠

where guard(pi, j) (resp. body(pi, j)) denotes the guard (resp. body) of the jth
rule defining pi. Any solution of this constraint store can be interpreted as a test
case that activates the CHR under test. Finding a solution to this constraint

4 Jcvm state, Frame, Package, XI , X0, XH , POS, Byte, NEG, Bool and True
are JSL constructor symbols given in the JCVM formal model.



Using CHRs to Generate Functional Test Cases for the JCVM 11

store leads to explore a possibly infinite search tree, as recursive or mutually
recursive CHR are allowed. However, a simple occur-check test permits to avoid
such problems. In this work, we followed a heuristic which consists to select
first the guard with the easier guard to satisfy. A guard was considered easier
to satisfy than another when it contains a smaller number of deep guards. The
idea behind this heuristic is to avoid the complex case during the generation.
This approach is debatable as these complex cases may contain the more subtle
faults. See section 5.3 for a discussion on possible improvements. Note that the
constraint store consistency is checked before going into a next branch, hence
constraints allows pruning the search tree before making a choice. Note also that
the test case generation process requires only to find a single solution and not
all solutions, hence a breath-first search could be performed to avoid infinite
derivations.

Oracles generation. As the CHR specification of the JCVM is executable
and the formal model is supposed to be correct, oracles can be generated just
by interpreting the CHR program with generated test cases. For example, the
following request gives us the oracle for the test case generated for push r1:
?- push(bool,pOS(xI(xO(xH))),jcvm state(nil,nil,nil)),R).
R=abnormal(jCVMError(eCode(state error)),jcvm state(nil,nil,nil))
Providentially, oracles can also be derived for abstract test cases. For example,
oracle for abstract test case of push r1 is computed by the following request:
?- push(T,X,jcvm state(Sh,He,nil)),R).
R=abnormal(jCVMError(eCode(state error)),jcvm state(Sh,He,nil))
When delayed goals are present, a labelling process must be launched to avoid
suspension. For example, the following request obtained by using the generated
abstract test cases for push r2:
?- push(T,X,jcvm state(Sh,He,cons(H,Lf))),R).
T=T, X=X, Sh=Sh, He=He, H=H, Lf=Lf, R=R
Delayed goals: push(T,X,jcvm state(Sh,He,cons(H,Lf)),R)
requires R to be unified to cons( X, S) to wake up the suspended goal. The
labelling process can be based on deterministic or randomised[16] labelling
strategies. In software testing approaches, random selection is usually preferred
as it improves the flaws detection capacity. The simplest approach consists
in generating terms based on a uniform distribution. Lot of works have been
carried out to address the problem of uniform generation of terms and are
related to the random generation of combinatorial structures [17]. In a previous
work [18], we proposed a uniform random test cases generation technique based
on combinatorial structures designs.

5.3 Experimental Results

As previously said, the library JSL2CHR.pl generated 1537 CHRs that specify
45 JCVM bytecodes. The library generates a CHR program that is compiled by
using the ech library of Eclipse Prolog [7]. We present the experimental results
we obtained by generating abstract test cases for covering all the 443 CHRs
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Table 1. Memory and CPU runtime measures for each bytecode

Name #tc global stack
(bytes)

local stack
(bytes)

trail stack
(bytes)

runtime (ms)

aload 1 33976048 148 1307064 0
arraylength 1 33849512 148 1299504 0
astore 1 33945864 148 1306660 0
invokestatic 1 33849512 148 1299504 0
nop 1 33945864 148 1306660 0
aconstnull 2 33854760 424 1300336 0
goto 2 33951112 424 1307492 0
jsr 2 33951112 424 1307492 0
push 2 33951112 424 1307492 0
conv 3 34055304 1076 1315924 10
dup 3 33972696 992 1310252 0
getfield 3 33876344 992 1303096 10
getfield this 3 33876344 992 1303096 0
neg 3 34055304 1076 1315924 11
new 3 33971904 1020 1309932 11
pop 3 33972152 992 1310156 0
pop2 3 34074480 1076 1317828 0
putfield 3 33885840 1076 1303944 0
putfield this 3 33876344 992 1303096 0
dup2 4 34122280 1884 1322772 10
swap 4 34029448 1884 1315948 11
ifnull 5 34023088 2216 1315392 10
ifnonnull 5 33926736 2216 1308236 10
icmp 6 34409440 3480 1343428 50
if acmp cond 6 34012528 3624 1316892 20
const 7 33968512 1512 1309716 0
invokespecial 7 34027448 4020 1317168 20
if cond 8 34047496 3772 1319316 10
ret 8 34059064 3940 1320780 11
invokevirtual 9 34432272 7632 1349576 60
arith 11 33948080 836 1306660 0
athrow 11 34596760 7648 1364512 90
invokeinterface 11 35007240 12104 1394104 120
newarray 13 34073536 7604 1325612 20
return 13 34889544 11448 1386532 91
if scmp cond 14 34349752 11004 1351220 49
inc 18 34305392 9568 1344628 29
lookupswitch 18 34117768 9548 1332008 29
tableswitch 18 34117768 9548 1332008 31
load 19 34263232 11672 1343060 30
store 25 34752536 20108 1390876 81
checkcast 30 35053520 21384 1419380 280
getstatic 33 34408808 20652 1360596 60
putstatic 34 34944800 28660 1416196 120
instanceof 62 36468800 46964 1555588 580
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associated to the bytecodes of the JCVM. These results were obtained on an
Intel Pentium M at 2GHz with 1GB of RAM under Linux Redhat 2.6 The full
process of generation of the abstract test cases for the 45 bytecodes (443 test
cases) took 3.4s of CPU time and 47 Mbytes as the global stack size, 0.3 Mbytes
as the local stack size and 2.6 Mbytes as the trail stack size. The detailed results
for each bytecode are given in Tab.1, ordered by increasing number of abstract
test cases (second column). Tab.1 contains the stack sizes as well as the CPU
time (excluding time spent in garbage collection and system calls) required for
the generation.

Analysis and discussion. The approach ensures the coverage of each rule of
the JSL bytecodes in a very short period of CPU time. The global and trail
stacks remain stable whereas the local stack size increases with the number of
test cases. A possible explanation is that some CHRs exit non-deterministically
and allocation of variables cannot be undone in this case. We implemented a
heuristic which consists to favour the CHRs that contain the smallest number
of deep guards. This heuristic behaves well as shown by the short CPU time
required for the bytecodes that are specified with a lot of CHRs (instanceof is
specified with 62 CHRs and only 0.6s of CPU time is required to generate the 62
abstract test cases). However, most of the time, this heuristic leads to generate
test cases that put the JCVM into an abnormal state. In fact, in the JSL specifi-
cation of the JCVM the abnormal states can often be reached by corrupting an
input parameter. As a consequence, they are easy to reach. Although this heuris-
tic is suitable to reach our test purpose (covering All rules) and corresponds to
some specific testing criterion such as Test all corrupting input , it is debatable
because it does not represent the general behaviour. Other approaches, which
could lead to better test cases, need to be studied and evaluated. For example,
selecting first the guard that contains the greatest number of deep guards could
lead to build test cases that activate interesting parts of the specification. Finally,
in these experiments, we only generated abstract test cases and did not evalu-
ate the time required in the concretization step. Although, this step does not
introduce research problems, considering it would allow to get a more accurate
picture of test case and oracle generation with CHR. Thus, we could evaluate
the efficiency of our approach and compare it to existing techniques.

6 Related Work

Bernot and al. [1] pioneered the use of Logic Programming to construct a test
set from a formal specification. Starting from an algebraic specification, the
test cases were selected using Horn clauses Logic. More recently, Gotlieb and
al. [19] proposed to generate test sets for structural testing of C programs by
using Constraint Logic Programming over finite domains. Given the source code
of a program, a semantically-equivalent constraint logic program was built and
questioned to find test data that cover a selected testing criterion. Legeard and
al.[2] proposed a method for functional boundary testing from B and Z formal
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specifications based on set constraint solving techniques (CLP(S)). They applied
the approach to the transaction mechanism of Java Card that was formally
specified in B. Test cases were only derived to activate the boundary states of
the specification of the transaction mechanism. Only Lötzbeyer and Pretschner
[20,21] proposed a software testing technique that uses CHR constraint solving.
In this work, models are finite state automata describing the behaviour of the
system under test and test cases are composed of sequence of input/output
events. CHR is used to define new constraint solvers and permits to generate
complex data types. Our work distinguishes by the systematic translation of
formal specifications into CHRs. Our approach does not restrict the form of
guards in CHR and appears so as more declarative to generate test cases.

7 Conclusion

In this paper, we have proposed to use the CHRs to generate functional test
cases for a JCVM implementation. A JSL formal specification of the JCVM has
been automatically translated into a CHR program and a test cases and oracles
generation process has been proposed. The method permits to generate 443 test
cases to test the 45 bytecodes formally specified. This result shows that the
proposed approach scales up to a real-world example.

However, as discussed previously, other approaches need to be explored and
evaluated. In particular, the coverage criterion All rules initially selected appears
as being too restrictive and other testing criteria could be advantageously used.
Moreover, the test concretization step need to be studied in order to compare
the efficiency of our approach against existing methods.

Finally, the key point of the approach resides in the use of deep guards,
although their treatment needs to be evaluated both from the analytic and the
experimental points of view.
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Abstract. An interesting feature of current Prolog systems is the abil-
ity to define external Prolog predicates that can be written in other lan-
guages. However, an important drawback of these interfaces is the fact
that they lack some important features necessary to improve both the
efficiency and the transparent integration of the Prolog system and the
external predicates. Such an example is the cut operation. This operation
is used quite often in Prolog programs, both for efficiency and seman-
tic preservation. However, its use after a call to an externally defined
predicate can have undesired effects. For example, if we have a pending
connection to another application, or if we have memory blocks allocated
by an external predicate, when a cut operation occurs, we may not be
able to perform generic destruct actions, such as closing the pending
connection or freeing the unnecessary memory. In this work, we propose
an extension of the interface architecture that allows to associate generic
user-defined functions with external predicates, in such a way that the
Prolog engine transparently executes them when a cut operation occurs.
We describe the implementation details of our proposal in the context of
the Yap Prolog system.

Keywords:Prolog Systems Implementation, ExternalModules, Pruning.

1 Introduction

Logic programming provides a high-level, declarative approach to programming.
Arguably, Prolog is the most popular logic programming language. Through-
out its history, Prolog has demonstrated the potential of logic programming in
application areas such as Artificial Intelligence, Natural Language Processing,
Knowledge Based Systems, Database Management, or Expert Systems.

Prolog’s popularity was sparked by the success of the WAM [1] execution
model that has proved to be highly efficient for common computer architectures.
The success obtained with the WAM led to further improvements and extensions.
Such an example is the foreign-interface to other languages. An interesting fea-
ture of this interface is the ability to define external Prolog predicates that can
be written in other languages. These predicates can then be used to combine

P. Van Hentenryck (Ed.): PADL 2006, LNCS 3819, pp. 16–30, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Generic Cut Actions for External Prolog Predicates 17

Prolog with existing programs or libraries, thereby forming coupled systems; or
to implement certain critical operations that can speed up the execution. Since
most language implementations are linkable to C, a widely implemented interface
by most Prolog systems is a foreign-interface to the C language.

However, an important drawback of these interfaces is the fact that they lack
some important features necessary to improve both the efficiency and the trans-
parent integration of the Prolog system and the external predicates. Consider,
for example, the cut operation. This operation is used quite often in Prolog pro-
grams, both for efficiency and semantic preservation. However, its use after a call
to an externally defined predicate can have undesired effects. For example, if we
have a pending connection to another application, or if we have memory blocks
allocated by the external predicate, when a cut operation occurs we may not be
able to perform generic destruct actions, such as closing the pending connection
or freeing the unnecessary memory.

In this work we focus on the transparent use of the cut operation over external
Prolog predicates. The motivation for this work appeared from the undesired
effects of the cut operation in the context of our previous work [2] on coupling
the Yap Prolog system [3] with the MySQL RDBMS [4], in order to obtain
a deductive database system that takes advantage of the YapTab [5] tabling
mechanism in a similar manner to the XSB system [6]. The effect of the cut
operation in this context is well-known and can be so significant that systems
such as XSB clearly state in the programmers’ manual that cut operations should
be used very carefully with relationally defined predicates [7]:

“The XSB-ODBC interface is limited to using 100 open cursors. When XSB
systems use database accesses in a complicated manner, management of open
cursors can be a problem due to the tuple-at-a-time access of databases from
Prolog, and due to leakage of cursors through cuts and throws.”

To solve the problem between cuts and external predicates we propose an ex-
tension of the interface architecture that allows to associate generic user-defined
functions with external predicates, in such a way that the Prolog engine trans-
parently executes them when a cut operation occurs. With this functionality
we can thus use these generic functions to avoid the kind of problems discussed
above.

The idea of handling cuts transparently by setting actions to be executed
on cut is not completely new. Systems like Ciao Prolog [8] and SWI Prolog [9]
also provide support for external predicates with the possibility to set actions
to be executed on cut. Our approach innovates because it uses the choice point
data structure to easily detect when a cut operation occurs on externally defined
predicates, and thus from the user’s point of view, pruning standard predicates
or externally defined predicates is equivalent. We describe the implementation
details of our approach in the context of the Yap Prolog system and we use the
coupling interface between Yap and MySQL as a working example. As we shall
see, our implementation requires minor changes to the Yap engine and interface.
Despite the fact that we have chosen this particular system, we believe that our
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approach can be easily incorporated in other Prolog systems that are also based
on the WAM execution model.

The remainder of the paper is organized as follows. First, we briefly describe
the cut semantics of Prolog and the problem arising from its use to prune ex-
ternal predicates. Next, we present the C language interface of Yap and its
implementation details. Then we describe the needed extension of the interface
architecture in order to deal with pruning for external predicates. At the end
we discuss some experimental results on the specific case of relational database
interfaces and outline some conclusions.

2 Pruning External Predicates

Cut is a system built-in predicate that is represented by the symbol ’!’. Its ex-
ecution results in pruning all the branches to the right of the cut scope branch.
The cut scope branch starts at the current node and finishes at the node corre-
sponding to the predicate containing the cut.

Figure 1 gives a general overview of cut semantics by illustrating the left to
right execution of an example with cuts. The query goal a(X) leads the com-
putation to the first alternative of predicate a/1, where !(a) means a cut with
scope node a. If !(a) gets executed, all the right branches until the node cor-
responding to predicate a, inclusively, should be pruned. Predicate b(X) is then
called and suppose that it succeeds with its first alternative. Next, !(a) gets
executed and all the remaining alternatives for predicates a and b are pruned.
As a consequence, the nodes for a and b can be removed.

Consider now the coupling interface between a logic system and a database
system. Logic goals are usually translated into SQL queries, which are then sent
to the database system. The database system receives the query, processes it,

root

a(X) :- b(X), !, c(Y).      b(X) :- ...
a(X) :- ...                 b(X) :- ...
a(X) :- ...                 c(Y) :- ...
                                 
                 ?- a(X).

a(X).

root

b(X),!(a),c(Y).

a

root

a

b

!(a),c(Y).

root

c(Y).

Fig. 1. Cut semantics
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and sends the resulting tuples back to the logic system. The usual method of
accessing the tuples in the result set is to use the Prolog backtracking mech-
anism, which iteratively increments the result set pointer (cursor) and fetches
the current tuple. Using this tuple-at-a-time access, the deallocation of the data
structure holding the result set, whether on the server or on the client side, is
only performed when the last tuple in the result set has been reached.

The problem is when, during the tuple-at-a-time navigation, a cut operation
occurs before reaching the last tuple. If this happens, the result set cannot be
deallocated. This can cause a lack of cursors and, more important, a lack of
memory due to a number of very large non-deallocated data structures. Consider
the example described in Fig. 1 and assume now that predicate b/1 is a database
predicate. The execution of b(X) will query the database for the corresponding
relation and bind X with the first tuple that matches the query. Next, we execute
!(a) and, as mentioned before, it will disable the action of backtracking for node
b. The result set with the facts for b will remain in memory, although it will
never be used.

3 The C Language Interface to Yap Prolog

Like other Prolog Systems, Yap provides an interface for writing predicates in
other programming languages, such as C, as external modules. An important
feature of this interface is how we can define predicates. Yap distinguishes two
kinds of predicates: deterministic predicates, which either fail or succeed but are
not backtrackable, and backtrackable predicates, which can succeed more than
once.

Deterministic predicates are implemented as C functions with no arguments
which should return zero if the predicate fails and a non-zero value otherwise.
They are declared with a call to YAP UserCPredicate(), where the first ar-
gument is the name of the predicate, the second the name of the C function
implementing the predicate, and the third is the arity of the predicate.

For backtrackable predicates we need two C functions: one to be executed
when the predicate is first called, and other to be executed on backtracking to
provide (possibly) other solutions. Backtrackable predicates are declared with a
call to YAP UserBackCPredicate(). When returning the last solution, we should
use YAP cut fail() to denote failure, and YAP cut succeed() to denote success.
The reason for using YAP cut fail() and YAP cut succeed() instead of just
returning a zero or non-zero value, is that otherwise, when backtracking, our
function would be indefinitely called. For a more exhaustive description on how
to interface C with Yap please refer to [10].

3.1 Writing Backtrackable Predicates in C

To explain how the C interface works for backtrackable predicates we will use
a small example from the interface between Yap and MySQL. We present the
db row(+ResultSet,?ListOfArgs) predicate, which given a previously gener-
ated query result set, the ResultSet argument, fetches the tuples in the result
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set, tuple-at-a-time through backtracking, and, for each tuple, unifies the at-
tribute values with the variables in the ListOfArgs argument. The code for the
db row/2 predicate is shown next in Fig. 2.

#include "Yap/YapInterface.h" // header file for the Yap interface to C

void init_predicates() {
YAP_UserBackCPredicate("db_row", c_db_row, c_db_row, 2, 0);

}

int c_db_row(void) { // db_row: ResultSet -> ListOfArgs
int i, arity;
YAP_Term arg_result_set, arg_list_args, head;
MYSQL_ROW row;
MYSQL_RES *result_set;

arg_result_set = YAP_ARG1;
arg_list_args = YAP_ARG2;
result_set = (MYSQL_RES *) YAP_IntOfTerm(arg_result_set);
arity = mysql_num_fields(result_set);
if ((row = mysql_fetch_row(result_set)) != NULL) { // get next tuple

for (i = 0; i < arity; i++) {
head = YAP_HeadOfTerm(arg_list_args);
arg_list_args = YAP_TailOfTerm(arg_list_args);
YAP_Unify(head, YAP_MkAtomTerm(YAP_LookupAtom(row[i])));

}
return TRUE;

} else { // no more tuples
mysql_free_result(result_set);
YAP_cut_fail();
return FALSE;

}
}

Fig. 2. The C code for the db row/2 predicate

Figure 2 shows some of the key aspects about the Yap interface. The include
statement makes available the macros for interfacing with the Yap engine. The
init predicates()procedure tells Yap, by calling YAP UserBackCPredicate(),
the predicate defined in the module. The function c db row() is the implemen-
tation in C of the desired predicate. We can define a function for the first time
the predicate is called and another for calls via backtracking. In this example the
same function is used for both calls. Note that this function has no arguments
even though the predicate being defined has two. In fact the arguments of a Prolog
predicate written in C are accessed through the macros YAP ARG1, ..., YAP ARG16
or with YAP A(N) where N is the argument number.

The c db row() function starts by converting the first argument (YAP ARG1) to
the corresponding pointer to the query result set (MYSQL RES *). The conversion
is done by the YAP IntOfTerm() macro. It then fetches a tuple from this result
set, through mysql fetch row(), and checks if the last tuple as been already
reached. If not, it calls YAP Unify() to unify the values in each attribute of the
tuple (row[i]) with the respective elements in arg list args and returns TRUE.
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On the other hand, if the last tuple has been already reached, it deallocates the
result set, as mentioned before, calls YAP cut fail() and returns FALSE.

For simplicity of presentation, we omitted type checking procedures over
MySQL attributes that must be done to convert each attribute to the appropriate
term in Yap. For some predicates it is also useful to preserve some data struc-
tures across backtracking. This can be done by calling YAP PRESERVE DATA()
to associate such space and by calling YAP PRESERVED DATA() to get access to
it later. With these two macros we can easily share information between back-
tracking steps. This example does not need this preservation, as the cursor is
maintained in the result set structure.

3.2 The Yap Implementation of Backtrackable Predicates

In Yap a backtrackable predicate is compiled using two WAM-like instructions,
try userc and retry userc, as follows:

try_userc c_first arity extra_space
retry_userc c_back arity extra_space

Both instructions have three arguments: the c first and c back arguments
are pointers to the C functions associated with the backtrackable predicate,
arity is the arity of the predicate, and extra space is the memory space used
by the YAP PRESERVE DATA() and YAP PRESERVED DATA() macros.

When Yap executes a try userc instruction it uses the choice point stack to
reserve as much memory as given by the extra space argument, next it allocates
and initializes a new choice point (see Fig. 3), and then it executes the C function
pointed by the c first argument. Later, if the computation backtracks to such
choice point, the retry userc instruction gets loaded from the CP AP choice
point field and the C function pointed by the c back argument is then executed.

In order to repeatedly execute the same c back function when backtrack-
ing to this choice point, the retry userc instruction maintains the CP AP field
pointing to itself. This is the reason why we should use YAP cut succeed() or
YAP cut fail() when returning the last solution for the predicate, as otherwise

Choice Point
Data

Predicate
Arguments

Extra Space

...

try_userc

c_first

arity

extra_space

retry_userc

c_back

arity

extra_space

...

Compiled WAM CodeChoice Point Stack

CP_AP

Fig. 3. The Yap implementation of backtrackable predicates
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the choice point will remain in the choice point stack and the c back function
will be indefinitely called.

The execution of the YAP PRESERVE DATA() and the YAP PRESERVED DATA()
macros in the C functions corresponds to calculate the starting position of the
reserved space associated with the extra space argument. For both functions,
this is the address of the current choice point pointer plus its size and the arity
of the predicate.

4 Generic Cut Actions for External Predicates

In this section, we discuss how we can solve the problem of pruning external
predicates. We discuss two different approaches: a first approach where the user
explicitly calls special predicates that perform the required action; and a sec-
ond approach, which is our original proposal, where the system transparently
executes a generic cut action when a cut operation occurs. To support our dis-
cussion, we will consider again the coupling interface between Yap and MySQL.
However and as we shall see, our approach can be generalised to handle not
only database predicates, but also any external predicate that requires a generic
action over a cut.

4.1 Handling Cuts Explicitly

In this approach the user has to explicitly call a special predicate to be executed
when a cut operation is performed over external predicates. For instance, for the
interface between Yap and MySQL, the idea is as follows: before executing a cut
operation that potentially prunes over databases predicates, the user must ex-
plicitly call a predicate that releases beforehand the result sets for the predicates
to be pruned.

If we consider again the example from Fig. 1 and assume that b(X) is a
database predicate, we might think of a simple solution: every time a database
predicate is first called, we store the pointer for its result set in an auxiliary
stack frame (we can extend the c db row() function to implement that). Then
we could implement a new C predicate, db free result/0 for example, that
deallocates the result set in the top of the stack. Having this, we could adapt
the code for the first clause of predicate a/1 to:

a(X) :- b(X), db_free_result, !, c(X).

To use this approach, the user must be careful to always include a call to
db free result/0 before a cut operator. A problem with this db free result/0
predicate occurs if we call more than one database predicate before a cut. Con-
sider the following definition for the predicate a/1, where b1/1 and b2/1 are
database predicates.

a(X) :- b1(X), b2(Y), db_free_result, !, c(X).

The db free result/0 will only deallocate the result set for b2/1, leaving
the result set for b1/1 pending. A possible solution for this problem is to mark
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beforehand the range of predicates to consider. We can thus implement a new C
predicate, db cut mark/0 for example, that marks where to cut to, and change
the db free result/0 predicate to free all the result sets within the mark left
by the last db cut mark/0 predicate.

a(X) :- db_cut_mark, b1(X), b2(Y), db_free_result, !, c(X).

A more intelligent and transparent solution is implemented in Ciao Pro-
log system [8]. The user still has to explicitly call a special predicate, the
’!!’/0 predicate, which will execute the cut goal specified using a special prim-
itive det try(Goal,OnCutGoal,OnFailGoal). For our db row/2 example this
would be det try(db row(ResultSet, ),db free result(ResultSet),fail),
and now if a db row/2 choice point is pruned using a ’!!’, the associated result
set is deallocated by db free result/1.

This solution solves the problem of cursor leaks and memory deallocation
when pruning database predicates. However, because it relies on calling special
predicates, the transparency in the use of relationally defined predicates is lost.
Moreover, if the user happens to mistakenly use a ’!’ instead of a ’!!’, incorrect
behaviour may happen the next time a ’!!’ is used [8].

4.2 Handling Cuts Transparently

We next present our approach to handle cuts transparently. As we shall see, this
requires minor changes to the Yap engine and interface. First, we extended the pro-
cedure used to declare backtrackable predicates, YAP UserBackCPredicate(), to
include an extra C function. Remember that for backtrackable predicates we used
two C functions: one to be executed when the predicate is first called, and another
to be executed upon backtracking. The extra function is where the user should de-
clare the function to be executed in case of a cut, which for database predicates will
involve the deallocation of the result set. Declaring and implementing this extra
function is the only thing the user needs to do to take advantage of our approach.
Thus, from the user’s point of view, pruning standard predicates or relationally
defined predicates is then equivalent.

With this extra C function, the compiled code for a backtrackable predicate
now includes a new WAM-like instruction, cut userc, which is used to store the
pointer to the extra C function, the c cut argument.

try_userc c_first arity extra_space
retry_userc c_back arity extra_space
cut_userc c_cut arity extra_space

When now Yap executes a try userc instruction, it also allocates space for
a cut frame data structure (see Fig. 4). This data structure includes two fields:
CF inst is a pointer to the cut userc instruction in the compiled code for the
predicate and CF previous is a pointer to the previous cut frame on stack. A
top cut frame global variable, TOP CF, always points to the youngest cut frame
on stack. Frames form a linked list through the CF previous field.

By putting the cut frame data structure below the associated choice point,
we can easily detect the external predicates being pruned when a cut operation
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Fig. 4. The Yap support for generic cut actions

occurs. To do so, we extended the implementation of the cut operation to start
by executing a new userc cut check() procedure (see Fig. 5). Remember that
a cut operation receives as argument the choice point to cut to. Thus, starting
from the TOP CF variable and going through the cut frames, we can check if a
cut frame will be pruned. If so, we load the cut userc instruction stored in
the corresponding CF inst field in order to execute the cut function pointed
by the c cut argument. The userc cut check() procedure is like a handler in
other programming languages that throws an exception, that is, executes the
cut userc instruction for the cut frames being pruned, when it encounters an
abnormal condition that it can not handle itself, in this case, a cut operation
over an externally defined predicate.

void userc_cut_check(choiceptr cp_to_cut_to) {
while (TOP_CF < cp_to_cut_to) {

execute_cut_userc(TOP_CF->CF_inst);
TOP_CF = TOP_CF->CF_previous;

}
return;

}

Fig. 5. The pseudo-code for the userc cut check() procedure

The process described above is done before executing the original code for
the cut instruction, that is, before updating the global registry B (pointer to
the current choice point on stack). This is important to prevent the following
situation. If the cut function executes a YapCallProlog() macro to call the
Prolog engine from C, this might have the side-effect of allocating new choice
points on stack. Thus, if we had updated the B register beforehand, we will
potentially overwrite the cut frames stored in the pruned choice points and
avoid the possibility of executing the corresponding cut functions.
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As a final remark, note that we can also call the YAP PRESERVED DATA()macro
from the cut function to access the data store in the extra space. We thus need to
access the extra space from the cut frames. This is why we store the cut frames
above the extra space. The starting address of the extra space is thus obtained
by adding its size to the pointer of the current cut frame.

To show how the extended interface can be used to handle cuts transparently,
we next present in Fig. 6 the code for generalising the db row/2 predicate to
perform the cursor closing upon a cut.

void init_predicates() {
YAP_UserBackCPredicate("db_row", c_db_row_first, c_db_row,

c_db_row_cut, 2, sizeof(MYSQL_RES *));
}

int c_db_row_first(void) {
MYSQL_RES **extra_space;
... // the same as for the c_db_row function
result_set = (MYSQL_RES *) YAP_IntOfTerm(arg_result_set);
YAP_PRESERVE_DATA(extra_space, MYSQL_RES *); // initialize extra space
*extra_space = result_set; // store the pointer to the result set
... // the same as for the c_db_row function

}

int c_db_row(void) {
... // the same as before

}

void c_db_row_cut(void) {
MYSQL_RES **extra_space, *result_set;

YAP_PRESERVED_DATA(extra_space, MYSQL_RES *);
result_set = *extra_space; // get the pointer to the result set
mysql_free_result(result_set);
return;

}

Fig. 6. Extending the db row/2 predicate to handle cuts transparently

First, we need to define the function to be executed when a cut operation
occurs. An important observation is that this function will be called from the
cut instruction, and thus it will not be able to access the Prolog arguments,
YAP ARG1 and YAP ARG2, as described for the c db row() function. However, we
need to access the pointer to the corresponding result set in order to deallocate it.
To solve this, we can use the YAP PRESERVE DATA()macro to preserve the pointer
to the result set. As this only needs to be done when the predicate is first called,
we defined a different function for this case. The YAP UserBackCPredicate()
macro was thus changed to include a cut function, c db row cut(), and to use
a different function when the predicate is first called, c db row first(). The
c db row() function is the same as before (see Fig. 2). The last argument of the
YAP UserBackCPredicate() macro defines the size of the extra space for the
YAP PRESERVE DATA() and YAP PRESERVED DATA() macros.
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The c db row first() function is an extension of the c db row() function.
The only difference is that it uses the YAP PRESERVE DATA() macro to store the
pointer to the given result set in the extra space for the current choice point. On
the other hand, the c db row cut() function uses the YAP PRESERVED DATA()
macro to be able to deallocate the result set when a cut operation occurs. With
these two small extensions, the db row/2 predicate is now protected against cuts
and can be safely pruned by further cut operations.

5 Experimental Results

In this section we evaluate the performance of our generic cut action mechanism
on the problem we have been addressing of relational queries result sets deal-
location. As we mentioned in the introduction, the XSB manual recommends
the careful use of cut with relationally defined predicates and recommends the
following solution:

“When XSB systems use database accesses in a complicated manner, man-
agement of open cursors can be a problem due to the tuple-at-a-time ac-
cess of databases from Prolog, and due to leakage of cursors through cuts
and throws. Often, it is more efficient to call the database through
set-at-a-time predicates such as findall/3, and then to backtrack
through the returned information.”

Using this solution it is clear that a cut operation will provide the correct
pruning over database tuples, as tuples are now stored on the WAM heap, but
at the sacrifice of execution time, as we will show.

The existing literature also lacks a comparative performance evaluation of the
coupling interfaces between a logic system and a relational database system and,
in this section, we also try to contribute to the benchmarking of such systems.
We compare the performance of XSB 2.7.1, Ciao 1.10 and Yap 4.5.7, accessing
a relational database. Yap has an ODBC interface and a native interface to
MySQL. XSB has an ODBC interface and Ciao has a native interface to MySQL.
We used MySQL Server 4.1.11, both for the native and ODBC interfaces, running
on the same machine, an AMD Athlon 1000 with 512 Mbytes of RAM.

This performance evaluation is directed to the cut treatment on the different
systems. For this purpose, we created a relation in MySQL using the following
SQL declaration:

CREATE TABLE table1 (
num1 INT NOT NULL,
PRIMARY KEY (num1));

and populated it with 1, 000, 100, 000 and 1, 000, 000 tuples. This relation was
imported as the db relation/1 predicate. To evaluate cut treatment over this
predicate we created the two queries presented in Fig. 7.

Query 1 represents the typical backtracking search as is trivially implemented
in Prolog. We want to find a particular value among the tuples of the database
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query1 :- db_relation(Tuple),
test(Tuple),
!.

query2 :- findall(Element,db_relation(Element),List),
member(Tuple,List),
test(Tuple),
!.

% test predicate for 1,000 tuples
test(500).

% test predicate for 100,000 tuples
test(50000).

% test predicate for 1,000,000 tuples
test(500000).

Fig. 7. Queries evaluated

relation, testing each one with the test/1 predicate, and execute a cut after
finding it. On average we should go through half of the tuples, and so our test/1
predicate succeeds when this middle tuple has been reached.

Query 2 follows the approach recommended on the XSB manual. Tuples are
stored in a Prolog list [11], which is kept on the WAM heap data structure
and thus works properly with cuts. Backtracking goes through the elements of
the list using the member/2 predicate. The same test/1 predicate is used. Note
that, after running the SQL query on the database server, the result set is stored
completely on the client side both in query 1 and query 2. The main difference
between query 1 and query 2 is that the native result set structure is used in
query 1, while in query 2 navigation is performed on a Prolog list structure.

Table 1 presents the execution time for query 1 and the difference in allocated
memory at the end of the query, for Yap with (Yap+) and without (Yap−)
our generic cut action mechanism. Table 2 presents the execution time and the
difference in allocated memory for Yap+, XSB and Ciao (for Ciao we used ’!!’
instead of ’!’) in both queries. We measured the execution time using walltime.
The memory values are retrieved by consulting the status file of the system
being tested in the /proc directory. All of the time results are in seconds, and
the memory results are in Kbytes. Queries 1 and 2 are run for a 1, 000, 100, 000
and 1, 000, 000 tuples.

Table 1. Query 1 results for Yap with and without our generic cut action mechanism

Interface System
Memory (Kb) Running Time (s)
1K 100K 1M 1K 100K 1M

ODBC
Yap+ 0 72 72 0.005 0.481 4.677
Yap− 0 3324 31628 0.005 0.474 4.625

MySQL
Yap+ 0 60 60 0.004 0.404 4.153
Yap− 0 3316 31616 0.005 0.423 4.564
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There is one straightforward observation that can be made from Table 1. As
expected, memory comparison for query 1 translates the fact that Yap− cannot
deallocate the result set pruned by a cut. As a result, memory size will grow
proportionally to the size of the result sets and to the number of queries pruned.

Table 2. Queries results for Yap, XSB and Ciao

Interface System Query
Memory (Kb) Running Time (s)
1K 100K 1M 1K 100K 1M

ODBC
Yap+ Query 1 0 72 72 0.005 0.481 4.677

Query 2 0 8040 73512 0.008 0.720 7.046

XSB Query 1 0 3284 31584 0.008 0.735 7.068
Query 2 0 4088 39548 0.012 1.191 11.967

MySQL
Yap+ Query 1 0 60 60 0.004 0.404 4.153

Query 2 0 8028 73500 0.006 0.640 6.474

Ciao
Query 1 (!!) 176 204 204 0.015 1.645 16.467
Query 2 (!!) 36 13708 n.a. 0.036 3.820 n.a.

Regarding Table 2 there are some interesting comparisons that can be made.
According to the approach suggested on the XSB manual to deal with cuts,
query 2 can be seen to be around 1.5 to 2 times slower than query 1 for all
interface/system combinations. These results thus confirm our observation that
this approach sacrifices the execution time. Memory results for query 2 are not
so relevant because at the end of query 2 no memory is left pending. The results
obtained in Table 2 simply reflect the fact that, during evaluation, the execution
stacks were expanded to be able to store the huge Prolog list constructed by the
findall/3 predicate. For Ciao we were not able to run query 2 for the list term
with 1,000,000 tuples.

For query 1, we can compare Yap with XSB interfacing MySQL through
an equivalent ODBC driver and Yap with Ciao interfacing MySQL through the
MySQL C API. In terms of memory comparison for query 1, the results obtained
for XSB translate the fact that it cannot deallocate the result set pruned by a
cut (remember that for Ciao we used ’!!’ to correctly deal with cuts). In terms
of execution time for query 1, Yap is a little faster than XSB and around 4
times faster than Ciao. This is probably due to the fact that Ciao negotiates
the connection with MySQL server at each Prolog goal, which causes important
slow-downs.

We should mention that in order to use the ’!!’ approach of Ciao we modified
the Ciao source code to use the special primitive det try/3 as described in
subsection 4.1 to correctly deallocate the pending result sets when a ’!!’ occurs.
By default, Ciao uses a different approach to deal with pending results sets. It
uses the tuple-at-a-time functionality of the MySQL C API and negotiates the
connection with MySQL server at each Prolog goal.

MySQL offers two alternatives for sending tuples to the client program that
generated the query: (i) store the set of tuples on a data structure on the
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database server side and send each tuple tuple-at-a-time to the client program;
or (ii) store the set of tuples on a data structure on the client side sending the
set of tuples at once. Note that with a tuple-at-a-time transfer between server
and client, the problem of pruned result sets also happens, though leaving the
allocated result set in the MySQL Server process and not in the Prolog process.
However, with the negotiation of connections at the goal level, Ciao can over-
come this problem, by closing connection with MySQL and therefore deallocating
result sets, but at the price of execution time, as is clear from Table 2.

6 Concluding Remarks

We discussed the problem of pruning externally defined Prolog predicates and we
proposed a completely transparent approach where the Prolog engine executes a
user-defined function when a cut operation occurs. We implemented our proposal
in the context of the Yap Prolog system with minor changes to the Yap engine
and interface. Our approach is applicable to any predicate that requires a generic
action over a cut.

We evaluated the performance of our generic cut action mechanism on the
problem we have been addressing of relational queries result sets deallocation,
using the Yap, XSB and Ciao Prolog systems interfacing MySQL for two queries
where a cut was executed over a large database extensional predicate. We ob-
served that, when using a typical backtracking search mechanism without sup-
port for deallocation of result sets over a cut, this can cause memory to grow
arbitrarily due to the very large number of non-deallocated data structures. Al-
ternatively, if we follow an approach like the one recommended on the XSB
manual to avoid this problem or if we maintain the result sets on the MySQL
server as in Ciao, we observed that we need to sacrifice the execution time.
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Abstract. While the idea of declarative debugging has been around
for a quarter of a century, the technology still hasn’t been adopted by
working programmers, even by those working in declarative languages.
The reason is that making declarative debuggers practical requires so-
lutions to a whole host of problems. In this paper we address one of
these problems, which is that retaining a complete record of every step
of the execution of a program is infeasible unless the program’s runtime
is very short, yet this record forms the space searched by the declarative
debugger. Most parts of this search space therefore have to be stored
in an implicit form. Each time the search algorithm visits a previously
unexplored region of the search space, it must decide how big a part of
the search space to rematerialize (which it does by reexecuting a call
in the program). If it materializes too much, the machine may start to
thrash or even run out of memory and swap space. If it materializes too
little, then materializing all the parts of the search space required by a
debugging session will require too many reexecutions of (parts of) the
program, which will take too long. We present a simple algorithm, the
ideal depth strategy, for steering the ideal middle course: minimizing re-
executions while limiting memory consumption to what is feasible. We
show that this algorithm performs well even when used on quite long
running programs.

1 Introduction

The aim of the Mercury project is to bring the benefits of declarative program-
ming languages to the software industry. Mercury is designed explicitly to sup-
port teams of programmers working on large application programs. It has a
modern module system, detects a large fraction of program errors at compile
time, and has an implementation that is both efficient and portable. To ensure
that programmers can actually enjoy the benefits claimed for logic programs,
Mercury has no non-logical constructs that could destroy the declarative seman-
tics that gives logic programs their power.

As part of the project, we have built a declarative debugger for Mercury.
We have ample motivation to make this declarative debugger work well because
many parts of the Mercury implementation (including the compiler and most
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of the declarative debugger itself) are written in Mercury. Using the Mercury
declarative debugger to debug the Mercury implementation requires us to con-
front and solve all the problems that would face anyone attempting to use a
declarative debugger to debug large, long-running programs. In previous work,
we addressed some usability issues such as how to support the browsing of large
(possibly multi-megabyte) terms [3], and implemented search strategies that are
effective even for very large search spaces [4].

The problem we address in this paper is how to manage the storage of very
large search spaces in the first place. The problem exists because the space
searched by a declarative debugger is equivalent to a complete record of every
step of the execution of a program, and given today’s CPU speeds, describing
the actions of a program that runs for just a second or two requires gigabytes
of storage. This makes storing the record in its entirety clearly infeasible. We
must store only a part, and recreate the other parts on demand. But how should
the system decide exactly what parts of the record to materialize when? We give
some algorithms for making that decision in sections 4 and 5, together with some
experimental evaluation. But first, section 2 introduces the Mercury declarative
debugger, and section 3 gives our general approach. We assume familiarity with
standard logic programming terminology.

2 Background: The Mercury Declarative Debugger

When the Mercury compiler is asked to generate debuggable code (with a flag
similar to gcc’s -g), it includes callbacks to the runtime system at significant
events in the program. These events fall into two categories: interface events and
internal events. Interface events record transfers of control between invocations of
predicates and functions. While Mercury supports functions as well as predicates,
the distinctions between them are only syntactic, so we call each predicate or
function a procedure. (Strictly speaking, it is possible for a predicate or function
to have multiple modes of usage, and a procedure corresponds to just one mode
of a predicate or function, but this distinction is not relevant to this paper.)
There are five kinds of interface events, the first four of which correspond to the
four ports of the Byrd box model [2]:

call A call event occurs just after a procedure has been called, and control
has just reached the start of the body of the procedure.

exit An exit event occurs when a procedure call has succeeded, and control
is about to return to its caller.

redo A redo event occurs when all computations to the right of a procedure
call have failed, and control is about to return to this call to try to find
alternative solutions.

fail A fail event occurs when a call has run out of alternatives, and con-
trol is about to return to the rightmost computation to its left that has
remaining alternatives which could lead to success.

excp An exception event occurs when control leaves a procedure call because
that call has thrown an exception.
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There are also internal events which record decisions about the flow of control,
but these are not important for this paper. The precise set of internal events is
not important for this paper.

When a Mercury program that was compiled with debugging enabled is run
under the Mercury debugger mdb, the runtime system gives the debugger con-
trol at each of these events. The debugger can then decide to interact with the
user, i.e. to prompt for and accept commands, before giving control back to
the program being debugged [13]. The mdb command set provides all the usual
debugger facilities, e.g. for inspecting the values of variables and setting break-
points. It also allows the retry of the current call or any of its ancestors. The
retry resets the program to the state it had at the time of the call event of
the selected procedure invocation. This is possible because in Mercury there are
no global variables that the call could have modified, and we have I/O tabling
[12,10] to simulate the undoing of any interaction of the call with the outside
world.

Retry capability is very useful in its own right, but it is also crucial in the
implementation of declarative debugging. Users can give the command to initiate
declarative debugging when execution is at an exit event that computed a wrong
solution, when execution is at the fail event of a call that did not compute all
the solutions it was expected to compute, or when execution is at the excp
event of a call that was not expected to throw that exception. In all three cases,
the Mercury declarative debugger uses the retry mechanism to reexecute the
affected call, but this time the code executed by the runtime system at each
event has the task of building a record of all the events of the call. We call this
record the annotated trace [1]. When execution arrives at the event at which
declarative debugging was initiated, the annotated trace is complete, and the
system invokes the declarative debugging algorithm.

That algorithm searches a tree called the evaluation dependency tree or EDT
[7]. Each node in the EDT corresponds to an exit, fail or excp event in the
trace. Each of these nodes also makes an assertion: that the solution represented
by an exit event is correct, that the set of solutions returned before a fail event
is complete, or that the exception thrown at an excp event was expected to be
thrown. The children of a given node N in the EDT are the exit, fail and excp
events generated by child calls made by the procedure invocation represented by
node N which could have affected the correctness of the assertion made by N .
The declarative debugger searches the EDT for a incorrect node whose children
are all correct: such nodes represent bugs.

The declarative debugger constructs the EDT from the annotated trace on
demand. The reason why we don’t build the EDT directly is that we need to
build different EDT fragments for negated goals than for non-negated goals, and
the condition of an if-then-else is a negated goal only if the condition fails. We
therefore wouldn’t know what kind of EDT to build until it is too late. Building
a more general data structure such as the annotated trace allows us to avoid this
problem [1].

Besides the heap space used by the program under normal conditions, there
are two additional memory costs when the annotated trace is being built. One
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cost is that each node in the annotated trace consumes a few words of memory;
the number of words depends on the node type. The other cost comes about
because some of our search algorithms need to know the values of procedure
arguments. We therefore include copies of the call’s input arguments in each call
node and copies of the call’s output arguments in each exit node. The copied
values may be (and usually are) pointers to the heap. These references prevent
the garbage collector from recovering the heap cells reachable through those
pointers. This doesn’t add to memory consumption directly, but the indirect
effect on memory requirements is very significant. The exact amount of heap
memory retained by e.g. a specific call node is impossible to predict, but on
average, the amount of heap memory retained by n events is usually linear in n.
This is because (1) Mercury programs can only execute straight line code between
events, so the amount of memory allocated between two events is bounded for any
given program, and the average doesn’t even vary very much between programs;
and (2) the rate of recovery of heap cells must roughly match the rate of their
allocation if the program is not to run out of memory. The memory overhead
imposed by collecting the annotated trace is thus broadly linear in the number
of nodes and the ratio can be measured for any particular program run. This
allows us to control the memory overhead of the annotated trace by controlling
the number of nodes in the annotated trace.

3 Rematerialization on Demand

To generate an annotated trace for a call, the call must be reexecuted and the
resulting events collected. Not all the events need be collected though. We may
collect a subset of the events generated by the call and ask the declarative
debugger to try to find a bug in one of these. If the declarative debugger needs
to explore events not collected the first time around, then the missing events can
always be added by reexecuting the appropriate call. (Reexecuting a deeper call
will require less time.)

On each reexecution of a call we require the set of events gathered during
that run to form an EDT. For each node in the EDT derived from a generated
portion of the annotated trace, we require that either all the children of the node
are present in the annotated trace, or none of them are present. If none of them
are present then we mark the node as an implicit root. An implicit root is the
root of a subtree in the EDT whose nodes have not been materialized in the
annotated trace.

If the declarative debugger needs to search the nodes in an implicit subtree,
the call corresponding to the exit, fail or excp event at the implicit root must
be reexecuted. To do this we use the debugger’s retry capability to rewind the
state of the program to a point just before the call event corresponding to the
exit, fail or excp event at the root of the implicit subtree. We then proceed
to reexecute the program from that point, gathering events into the annotated
trace, until we arrive at the exit, fail or excp event at the implicit root.

The first version of the algorithm we use to decide which events should be
added to the annotated trace on a given run is depicted in figure 1 (this algo-
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build annotated trace(call number, end event, depth limit) returns trace is

trace := NULL

inside := false
Rewind execution to a call before or equal to call number
For each executed event e loop

If e is a call or redo event for call call number
inside := true

If inside
If depth(e) < depth limit

trace := create annotated node(e, trace)
Else if depth(e) = depth limit and e is an interface event

trace := create annotated node(e, trace)
If e is an exit, fail or excp event

trace := mark as implicit root(e, trace)
If e is an exit, fail or excp event for call call number

inside := false
Until the event number of e is end event

Fig. 1. Algorithm for building the annotated trace to a predefined depth limit

Fig. 2. The EDT corresponding to the whole annotated trace (left), and the EDT
fragments corresponding to the parts of the trace materialized on demand (right)

rithm is from [1]). Here the depth limit parameter controls the depth of each
generated portion of the annotated trace, or more precisely, the depth of the
EDT represented by the generated portion of the annotated trace. The depth
function returns the depth of an event relative to the root of the portion of the
EDT currently being materialized. Initially end event will be the event where
the user started the declarative debugging session. On subsequent invocations
end event will be the event at the root of an implicit subtree we wish to mate-
rialize. call number is the call sequence number of the call corresponding to the
event at the root of the implicit subtree.

The manipulation of inside ensures that we collect events only from inside
the call tree of the selected call. Of the events that pass this test, the algorithm
includes in the annotated trace all events above the depth limit, only interface
events at the depth limit, and no events below the depth limit. Given a large EDT
such as the one on the left in figure 2, successive invocations of this algorithm
materialize annotated traces that yield EDT fragments whose relationship is
shown by the triangles on the right of that figure.

When the event with event number end event is executed, the new annotated
trace fragment is complete. If this is the first, topmost fragment, the declarative
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Fig. 3. The shape of the trees for “bigsmall” and “smallbig”, and their approximations

debugger starts running the search algorithm on it, converting nodes in the
annotated trace into nodes of the EDT on demand. If the search algorithm
wants to explore a part of the search space beneath an implicit root, it will invoke
build annotated trace again. When it returns, the debugger will link the new
fragment into the EDT at the point of the implicit root. Our representation
scheme allows the declarative debugger to view the EDT as a single whole tree
whose nodes are materialized on demand, not as something stitched together
from several fragments.

4 Ineffective Heuristics

The simplest way to control the space-time trade-off is to give a fixed value for
depth limit in figure 1. The problem with this solution is that it is impossible
for the declarative debugger implementor to give a value for depth limit that
yields acceptable results in most cases, let alone all cases. This is because the
EDTs of different programs have greatly different average branching factors. It
is possible for a given depth setting to cause the declarative debugger to try to
collect infeasibly many events for one program, while collecting only a handful
of events for another program, requiring a huge number of reexecutions of the
program to construct the required parts of the EDT.

A practical algorithm must therefore make depth limit a function of the shape
of the implicit tree we wish to materialize. Initially nothing is known about the
shape of the search space. We therefore initially give build annotated trace a
small fixed depth limit (currently five), but make it record information in each
node at the bottom edge of the first fragment about the implicit subtree rooted
there. This allows us to give better depth limits to the invocations that build
lower fragments. Our ideal depth limit is one which will cause no more than a
specified number of nodes, node limit, to be included in the new trace fragment,
since (statistically) this also bounds the memory required by the new fragment.
For now, node limit is a parameter; later, we will look at what values of this
parameter are sensible.

Average branching factor. It is easy to modify the code in figure 1 to detect
when execution enters and leaves an implicit subtree, to record the maximum
depth of each subtree (dmax) and the numbers of calls (C) and events (E) in each
subtree, and to record this data in the root of each implicit subtree. While this
info doesn’t tell us about the implicit EDT directly, it tells us about a related
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tree we call the weighted call tree. We can think of the annotated trace as a
weighted tree where each node corresponds to a call event, and the weight of
a node is the number of events that have the same call sequence number as the
node, including internal events. Since the sum of the weights of all the nodes
equals the number of annotated trace nodes represented in the tree, this tree is
useful for modeling memory consumption.

For a weighted call tree with a constant branching factor b, the same weight
for each node w, and maximum depth dmax, the number of events represented
by the tree, N , is given by N = w

∑dmax−1
i=0 bi. In this case, N = E, and we can

compute the average w as E/C. This makes it easy to solve for b by applying
e.g. Newton’s method to the monotonic function f(b) = w

∑dmax−1
i=0 bi − N to

find b where f(b) = 0. This gives us the average branching factor of the implicit
subtree. Assuming the branching factors of most nodes are close to this average,
we can calculate the depth limit we need to collect about node limit nodes by
calculating the root of the monotonic function g(d) = w

∑dmax−1
i=0 bi−node limit.

Unfortunately, our benchmarking shows the assumption is often very far from
the truth. We used four synthetic benchmark programs: fib, stick, bigsmall and
smallbig, and one real one: the Mercury compiler mmc. For now, we ran all
five on data that yielded 1 to 25 million events. Our benchmark machine was
a PC with a 2.4 GHz Intel Pentium IV with 512 Mb of RAM running SuSe
Linux 8.1. The behavior of the heuristic is ok on the test program whose tree
is a thin (predictable) stick and isn’t too bad for Fibonacci, though for fib it
collects 10 to 60 times as many nodes as intended due to the difference between
the average branching factor 1.55 and the actual branching factor of 2 for all
non-leaf nodes. However things are worse for the other benchmarks. Many pro-
grams contain components with characteristics similar to bigsmall or smallbig,
whose tree shapes are shown in trees A and B respectively in figure 3. For small-
big, there didn’t appear to be any correspondence at all between node limit
and the average number of nodes actually constructed per reexecution. With
node limit = 20 000, we got about 150 000; with node limit = 100 000, we got
about 35 000. Since the tree suddenly gets exponentially large in the bottom
few layers, the computed average branching factor needs to be only a little bit
too optimistic for the number of nodes constructed to explode. How optimistic
the approximation is depends on how close to the widening point of the tree the
relevant approximation is taken from. That in turn depends on the depths used
for the fragments above in an essentially unpredictable manner. For bigsmall,
the computed depth limit is so bad that trying to collect only 100 nodes ran
our test machine out of memory, and the same thing happens with mmc with
node limit = 2 000.

Biased branching factor. The problem with bigsmall arises because the approx-
imation tree (C in figure 3) is way too deep and narrow: it doesn’t have the
same shape as the actual tree, even though it has the same maximum depth and
number of nodes. Based on this, the heuristic believes that most nodes are near
the bottom and thus it is safe to collect many levels at the top, but those levels
contain far more events than expected.



38 I. MacLarty and Z. Somogyi

Even though smallbig and bigsmall have very different shapes, they are ap-
proximated by the same tree, tree C in figure 3. We could fix this by approximat-
ing each implicit tree with a constant-branching-factor tree of the same average
depth. The smallbig and bigsmall examples would then be approximated by trees
D and E respectively in figure 3.

Calculating the average depth of an implicit tree is almost as simple as calcu-
lating the maximum depth; we now solve for β in N = w

∑dave−1
i=0 βi where dave

is the average depth of the nodes in the tree. This approach does perform better.
For stick and fib, the numbers of nodes collected are much closer than the num-
ber asked for by node limit, though there are still some significant deviations.
However, the new estimates are still far from perfect. The bigsmall and mmc
tests still collect far too many nodes, though with this heuristic they run out
only with node limit = 2 000 for bigsmall and node limit = 200 000 for mmc.
The smallbig tests still suffers from exactly the same problem as before: the
numbers of nodes collected still bears little relationship to node limit, though
the chaotic pattern is different.

5 An Effective Strategy

Clearly, approximating an implicit subtree using a tree with a constant branching
factor is not a useful approach, since realistic programs do not behave this way.
Real programs call all sorts of different predicates. Some are simple recursive
predicates which produce stick-like trees; some have long conjunctions in their
bodies which produce wide trees with large branching factors. We need a heuristic
that works with both these shapes and everything in between. The heuristics of
the previous section were also flawed in that their estimates of depth limit could
inherently fail in either direction: they could try to collect too many levels as well
as too few. While trying to collect too few levels is relatively benign, requiring
only a small increase in the number of reexecutions, our benchmarking shows
that trying to collect even a few too many levels can require far more memory
than is available. We therefore want a heuristic that guarantees that no more
than node limit nodes will be added to the annotated trace. The ideal value for
depth limit is the highest value that has this property.

Our ideal depth strategy, whose algorithm is shown in figure 4, is designed to
compute this value directly. When processing events we don’t link into the new
trace fragment, we don’t just record their maximum or average depth; we build
a more detailed record. The algorithm does this by building an array counts
that records the number of events at each depth in the tree below the current
depth limit for any given implicit subtree. The calculate ideal depth function
scans this array, incrementing the depth and computing the cumulative number
of events at or above the current depth until it gets to a depth at which this
total exceeds node limit, then returns one less than this depth as ideal depth.
(If the subtree contains fewer than node limit nodes, then there is no such
depth, and we return a depth that causes all those nodes be included in the
fragment.) We attach the ideal depth of each subtree to the node that acts as
the root of that subtree. We specify depth limit = 5 for the first invocation of
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build annotated trace(call number, end event, node limit, depth limit)
returns trace is

trace := NULL

inside := false
Initialise the counts array to size �node limit/2�, all zeros
Rewind execution to a call before or equal to call number
For each executed event e loop

If e is a call or redo event for call call number
inside := true

If inside
If depth(e) < depth limit

trace := create annotated node(e, trace)
Else if depth(e) = depth limit and e is an interface event

trace := create annotated node(e, trace)
If e is an exit, fail or excp event

ideal depth := calculate ideal depth(counts, node limit)
trace := mark as implicit root(e, ideal depth, trace)
Reset counts to all zeros

Else
depth in implicit subtree := depth(e) - depth limit
If depth in implicit subtree ≤ �node limit/2�

Add 1 to counts[depth in implicit subtree]
If e is an exit, fail or excp event for call call number

inside := false
Until the event number of e is end event

Fig. 4. Algorithm for building the annotated trace using the ideal depth strategy

build annotated trace, as before. However, later invocations, whose task is to
build an annotated trace fragment from an implicit root at the bottom edge of
a previous fragment, will be given as depth limit the recorded ideal depth for
the subtree at that node. This guarantees that we collect as many nodes as we
can without going over node limit.

Since when we materialize the subtree at an implicit root we will wish to
collect at most node limit events, it suffices to counts events down to a depth of
�node limit/2�. This is because the minimum number of events at each depth
is two (a call event and its corresponding exit, fail or excp event). We can
reuse the same array to calculate the ideal depth for all the implicit subtrees
encountered during a particular run. Reserving �node limit/2� words of memory
for this purpose is not a problem, since we are clearly willing to have the new
fragment occupy space linear in node limit. The array just increases the constant
factor slightly.

Materializing the subtree of a predicate that may succeed more than once
requires a slight variation on our algorithm. Suppose a predicate succeeds twice,
producing a call/exit pair and a redo/exit pair. The subtree rooted at the
second exit node can contain events both from between the call/exit pair
and from between the subsequent redo/exit pair (consider a child call whose
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Table 1. bigsmall: ideal depth strategy

node limit exec count total created total created
exec count

TU TR RSS VSZ
100 1124 102 910 91 35.36 51.60 41 49
500 210 101 826 484 10.63 13.67 41 49

1 000 105 102 188 973 7.81 9.40 41 49
5 000 23 112 432 4 888 5.66 6.17 41 49

10 000 12 116 280 9 690 5.45 5.81 41 49
50 000 4 173 876 43 469 5.56 5.80 51 65

100 000 2 165 514 82 757 5.85 6.10 50 57
500 000 1 262 130 262 130 7.28 7.53 59 74

1 000 000 1 524 124 524 124 9.65 9.93 90 99

Table 2. Mercury compiler compiling small module, ideal depth strategy

node limit exec count total created total created
exec count

TU TR RSS VSZ
1 000 83 59 460 716 19.27 21.14 98 126
5 000 42 173 383 4 128 18.76 19.89 106 134

10 000 31 265 019 8 549 18.93 19.83 115 142
50 000 11 507 947 46 177 18.39 18.93 150 176

100 000 7 640 189 91 455 19.48 19.98 157 184
500 000 2 911 521 455 760 19.52 19.97 200 226

1 000 000 1 913 087 913 087 24.19 24.70 246 268

Table 3. Mercury compiler compiling large module, ideal depth strategy

node limit exec count total created total created
exec count

TU TR RSS VSZ
1 000 56 26 921 480 274.48 277.48 205 233
5 000 31 86 131 2 778 225.00 226.96 201 225

10 000 25 162 232 6 489 214.26 215.92 206 233
50 000 15 583 876 38 925 186.18 187.54 254 284

100 000 13 1 034 614 79 585 186.63 188.03 311 334
500 000 7 2 969 020 424 145 174.98 190.41 477 542

1 000 000 6 5 130 084 855 014 193.08 684.92 443 866

result is used in both solutions). The algorithm in figure 4 resets counts at each
exit event, which means the ideal depth limit stored at the second exit will
be too big because it is based only on the events between the redo and second
exit. To fix this, we can reexecute the call in question using a modified version
of the algorithm in figure 4 which doesn’t reset the counts array and doesn’t
construct any trace nodes. (Since most calls can succeed at most once, this extra
reexecution will be required only rarely.) The usual calculate ideal depth
function at the second exit node will then compute the right ideal depth.

Table 1 gives experimental results for the most problematic of our small pro-
grams, bigsmall. Tables 2 and 3 do the same for the Mercury compiler. Table 2
shows the compilation of a small module, while table 3 shows the compilation
of a large 6 000+ line source file, a process that generates more than 200 million
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events. Each test simulates a declarative debugging session using the divide-and-
query search strategy [11]. The search starts at the top node of tree (the exit
node of main), and since our testing harness automatically answers ‘no’ to all
questions, it ends at a leaf node. (For our largest test, finding this “bug” re-
quired 22 questions.) This is the kind of search that puts the most stress on our
algorithm since it requires the most reexecutions of the program.

In each table, the only parameter is node limit, the upper bound on the
number of nodes that we want to collect for the annotated trace fragment built by
each reexecution. We do not include the initial or final reexecutions in the shown
measurements, since the initial reexecution uses a small constant depth limit
(since nothing is known about the tree at this time) and the size of the fragment
built by the final reexecution is limited by the size of the subtree, not node limit.
total created is the total actual number of annotated trace nodes which were
produced during the complete debugging session (except for the first and last
reexecutions). exec count is the number of reexecutions required to locate the
bug (again minus the first and last reexecutions). total created/exec count gives
the actual average number of nodes collected per reexecution, which we would
like to be less than node limit but otherwise as close to it as possible. The TU and
TR columns show the user CPU time and the real (wall clock) time required for
the tests in seconds; the times were averaged over ten runs. The last two columns
show (in megabytes) the total resident set size (RSS) and the total virtual size
(VSZ) of the process (including swap space) at the time when the bug is located,
which is when they are at their maximum. All this data is available, in more
detail and for more values of node limit, for all our benchmarks and all our
heuristics in [3], though we have improved our system since that earlier work.

The results show that the extra calculation required to compute the ideal
depth limit (instead of estimating it) is well worth it. For all our benchmarks,
including the ones not in the tables, we get more than acceptable performance
for a wide range of node limit values, with values in the 10 000-100 000 range
generally performing best. Having node limit much lower wastes time in too
many reexecutions; having node limit much higher runs the risk of running out
of memory. (The last row of table 3 shows the start of thrashing.) We have
found node limit = 20 000 to work well for all the programs we have tried. For
example, when the Mercury compiler is invoked on that 6 000 line source file, our
algorithm needs about three and a half minutes to materialize all the fragments
needed to find the “bug” in a leaf node. During this time, the search algorithm
asked the oracle 22 questions. If it were the user answering these questions, there
would be on average about an 8 to 10 second delay between his/her answer and
the next question. Given that the user will certainly take much more than 10
seconds to answer each query, the overhead of search space materialization is
not the bottleneck in the search for the bug.

With node limit = 50 000, the sizes of fragments tend to be in the 5-25 Mb
range, both for the compiler and some other programs we have looked at. When
the cumulative sizes of the fragments materialized so far starts to exceed the
available memory, it would be relatively straightforward to release the mem-
ory of the least recently used fragment. The EDT nodes constructed from it
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would remain, and if the search algorithm ever needs the other nodes from that
fragment, it could construct the fragment again.

On any given reexecution of part of the program, most events end up being
ignored. It is therefore important to optimize the handling of these events. This
is why the we use a simple depth cutoff as the criterion for inclusion in a new
fragment. Other criteria may lead to fragments that have a higher proportion of
nodes useful to the search algorithm (whichever one is being used), but this is
unlikely to compensate for the sharply greater cost of evaluating the test of any
nontrivial criterion.

6 Related Work

Nilsson and Fritzson [6,5] also propose constructing the program trace piece by
piece. They introduce the concept of the query distance to a node. This is the
number of questions required to get to the node using a top-down, left-to-right
search.

They optimistically materialize nodes and then uses the query distance to
decide which nodes should be discarded if memory usage becomes too high.
Nodes with higher query distances are the first to be discarded.

This works well for top-down search, since most of the time the next question
will be in a materialized fragment of the EDT. This technique doesn’t work with
the Mercury declarative debugger because it can use multiple search strategies
(including a version of Shapiro’s divide-and-query [11] algorithm and a search
strategy similar to Pereira’s rational debugger [8]). With these search strategies
[4] the query distance ceases to become a useful heuristic for deciding which
nodes to throw away.

Modifying the notion of the query distance to work for different search strate-
gies is not a viable option, since it is unclear how the modified query distance
could be efficiently calculated for search strategies like divide-and-query. Also,
a node may have a small query distance for one search strategy and a large
query distance for another strategy. Since the user may switch search strategies
mid-session, the query distance heuristic doesn’t help to decide whether to keep
such a node.

There is also a penalty to be paid for first creating a node in the EDT and
then disposing of that node later when resources become tight (mostly due to
the extra work garbage collection must do). Using our method we are able to
know ahead of time how much of the EDT can be viably generated in a single
reexecution, so no nodes are created only to be destroyed later.

Plaisted [9] proposed an efficient method for deciding which nodes in the EDT
to materialize. Unfortunately the method only works with the divide-and-query
search strategy, and generates questions that are hard for users to answer.

7 Conclusion

During our work on the Mercury declarative debugger we found that we needed
a new algorithm to control the resources consumed by the annotated trace,
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because none of the techniques in the current literature were adequate in the
presence of multiple search strategies.

We first tried two variations on a method that tries to guess the shape of the
subtree to be constructed from information about its branching factor. These
methods don’t work, because their implicit assumption that most nodes have
similar branching factors is much too far from the truth.

Analyzing the cause of the failure led us to the ideal depth strategy. While this
strategy uses a bit more memory, it allows us to calculate exactly how much of
the search space we can viably materialize each time the search algorithm visits a
previously unexplored part of the search space. We have found this algorithm to
work very well in practice, so well that users of the Mercury declarative debugger
spend much more time answering questions than waiting for rematerialization,
even when debugging long running, real programs. Our algorithm thus helps
programmers find bugs more quickly.

The techniques we presented are certainly not specific to Mercury. They can
be applied to any declarative debugger with a tree that must be searched and an
execution replay mechanism that can rebuild previously unmaterialized parts of
the tree.

We would like to thank the Australian Research Council and Microsoft for
their support.
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Abstract. Intuitively, reflection is the feature that can represent and
reason meta-level entities at the object level. In this paper, we use a
reflective language to implement a local model checker and analyze the
implementation. The implementation is greatly simplified by reflection.
Further, we show the feature can be applied to verify the concise im-
plementation rather easily. The simplicity of our approach suggests that
reflection may be useful in the implementation and verification of other
explicit-state model checking algorithms.

Keywords: Reflection, Rewriting Logic, Model Checking, Logic Pro-
gramming.

1 Introduction

Model checking has become a popular technique to improve system quality dur-
ing the past decade. Thanks to its success in hardware verification, many model
checkers are being developed in research laboratories and sold by companies. But
building a model checker requires sophisticated programming and algorithm-
developing skills. A typical model checker may contain tens, even hundreds, of
thousands of lines of C code. Since model checkers have been deployed in the
design of many critical systems, one wonders whether there is a way to ensure
the quality of these verification tools.

In this paper, we use rewriting logic [15] as the formalism to verify a working
model checker. Following the framework proposed in [23,10,21], we implement
a model checker in Maude, a logic programming language based on rewriting
logic [6]. Unlike other model checkers which use different languages in their
implementation and model specification, the Maude language is also used as the
modeling language of our model checker.

The key to use Maude as the algorithm implementation and the model spec-
ification language is reflection. Intuitively, reflection is the feature that can rep-
resent and reason about meta-level entities at the object level. In the framework
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of [23,10,21], model specifications reside in the meta level. The model checking
algorithm inspects meta-level specifications by reflection. Hence, we can imple-
ment a model checking algorithm in Maude. It is unnecessary to have different
languages in different levels. Additionally model simulation can be performed by
reflection. This simplifies our implementation in Maude significantly.

Furthermore, we can verify our implementation by another application of
reflection. While verifying our model checker, the implementation becomes an
entity in the meta level. We are able to use other object-level model checkers to
analyze our implementation. Specifically, we verify our model checker by two dif-
ferent model checkers — the abstract model checking algorithm and the Maude
built-in LTL model checker in [10].

The advantages of our approach are its simplicity and clarity. With the re-
flective language Maude, the model checking paradigm is modeled as two levels
of computation. Using the same principle, it is straightforward to model the
verification of model checkers as another level of computation. We feel the same
task would be too complicated to achieve had the concept of reflection not been
introduced in the framework. Reflection in declarative languages is not only of
theoretical endeavor, but also of practical interests.

1.1 Related Work

Model checking algorithms have been formally verified by proof assistants [19,13].
In these work, the semantics and algorithms are formalized in the meta logic
of proof assistants. Verifying model checking algorithms amounts to proving
that the outcomes of algorithms agree with the semantics in the meta logic. In
principle, it is possible to verify systems that can be formalized in the meta logic.
But intensive human intervention is required.

An LTL model checker is available in recent releases of Maude [10]. The per-
formance of the built-in LTL model checker is comparable to the model checker
Spin [11]. But the implementation is written in C++. It is difficult for verifica-
tion tool developers to modify and improve the internal model checker.

The inconvenience is resolved in [21] where a proof-theoretic μ-calculus model
checking algorithm [9,20,24] is presented. The μ-calculus model checking algo-
rithm is implemented in an older version of Maude, and requires extension to
core Maude system for technical reasons. Subsequently, it is less efficient than
what we present in this paper.

In [2,7], reflection is used for reasoning families of membership equational
theories. Metatheorems about families of theories are represented and proved as
theorems at object level by reflection. The idea is realized in the theorem prover
ITP for membership equational theories [5].

1.2 Outline

The paper is organized as follows. Section 2 provides necessary technical back-
grounds. An abstract μ-calculus model checking algorithm is presented in Sec-
tion 3. It is followed by its concrete implementation in Section 4. We use the
concrete implementation in Section 4 to verify properties of Peterson’s algorithm
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in Section 5. The μ-calculus model checker is then verified by two different algo-
rithms in Section 6. Finally, we discuss future work and conclude the paper in
Section 7.

2 Preliminaries

We briefly review μ-calculus model checking and rewriting logic. For a more
detailed exposition, the reader is referred to [12,9,20,24,8,4,10].

2.1 μ-Calculus

A μ-calculus formula ϕ is constructed by the following rules [12]:

– propositional variables: X, Y, Z, . . .;
– atomic propositions (AP): p, q, r, . . .;
– Boolean operators: ¬ϕ, ϕ ∨ ϕ′;
– modal existential next-state operator: 〈�̄〉ϕ, where �̄ is a set of transition

labels;
– greatest fixed-point operator: νX.ϕ, where the bound variable X occurs

positively in ϕ.

As usual, we use derived operators such as ϕ ∧ ϕ′(≡ ¬(¬ϕ ∨ ¬ϕ′)), [�̄]ϕ(≡
¬〈�̄〉¬ϕ) and μX.ϕ(≡ ¬νX.¬ϕ[¬X/X ]).

The semantics of μ-calculus formulae is defined over a Kripke structure K =
(S, Labl,→, s0, P ) where S is the set of states, Labl the set of transition labels,
→⊆ S × Labl× S the transition relation, s0 ∈ S the initial state, and P ∈ S →
2AP the labeling function which maps each state to a set of atomic propositions
satisfied in the state. For clarity, we write s

a→ t for (s, a, t) ∈→. A valuation ρ is
a function mapping propositional variables to subsets of S. Let R ⊆ S. We write
ρ[X �→ R] for the valuation mapping X to R and Y to ρ(Y ) for X �= Y . Given
the valuation ρ, the semantic function [[ϕ]]ρ for a μ-calculus formula ϕ computes
the set of states satisfying ϕ under the valuation ρ:

– [[X ]]ρ = ρ(X);
– [[p]]ρ = {s ∈ S : p ∈ P (s)};
– [[¬ϕ]]ρ = S \ [[ϕ]]ρ;
– [[ϕ ∨ ϕ′]]ρ = [[ϕ]]ρ ∪ [[ϕ′]]ρ;
– [[〈�̄〉ϕ]]ρ = {s ∈ S : ∃a ∈ {�̄}, t ∈ S.s

a→ t and t ∈ [[ϕ]]ρ};
– [[νX.ϕ]]ρ =

⋃
{R ⊆ S : R ⊆ [[ϕ]](ρ[X �→ R])}.

For any μ-calculus formula ϕ and Kripke structure K = (S, L,→, s0, P ), we
write K, s |= ϕ when s ∈ [[ϕ]]∅. The μ-calculus model checking problem is to
determine whether K, s0 |= ϕ.

In order to solve the μ-calculus model checking problem, various algorithms
have been developed (see, for example, [3]). In tableau-based local model check-
ing algorithms [9,20], the problem is solved by constructing proofs of the judg-
ment K, s � ϕ. The tableau-based algorithms were then simplified to a set of
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reduction rules in [24]. The following extension to the greatest fixed point oper-
ator, νX{r̄}ϕ where r̄ is a set of states, is introduced in [24]:

[[νX{r̄}ϕ]]ρ =
⋃
{R ⊆ S : R ⊆ {r̄} ∪ [[ϕ]](ρ[X �→ R])} .

Note that νX{}ϕ ≡ νX.ϕ. Any fixed-point operator can be translated to
its extended form syntactically. Intuitively, the formula νX{r̄}ϕ records previ-
ously visited states in {r̄}, which is handy for co-inductive proofs. The extension
reduces the side condition of tableau-based algorithms to membership check-
ing and allows the proof search to be performed by rewriting. Given a Kripke
structure K = (S, Labl,→, s0, P ) and a μ-calculus formula ϕ, the following rules
reduce K, s � ϕ to Boolean values true or false [24]:

– (K, s � p) = true if p ∈ P (s);
– (K, s � p) = false if p �∈ P (s);
– (K, s � false) = false;
– (K, s � ¬ϕ) = ¬b where (K, s � ϕ) = b;
– (K, s � ϕ ∨ ϕ′) = b0 ∨ b1 where (K, s � ϕ) = b0 and (K, s � ϕ′) = b1;
– (K, s � 〈�̄〉ϕ) = true if (K, t � ϕ) = true for some t and a such that a ∈ {�̄}

and s
a→ t;

– (K, s � νX{r̄}ϕ) = true if s ∈ {r̄};
– (K, s � νX{r̄}ϕ) = (K, s � ϕ[νX{s, r̄}ϕ/X ]) if s �∈ {r̄}.

Let K be a finite Kripke structure and ϕ a μ-calculus formula. It is shown
that (K, s � ϕ) = true if and only if K, s |= ϕ [24].

2.2 Rewriting Logic

Since its introduction in [15], rewriting logic has been used as a unified formal-
ism for modeling concurrency [15,16,14] and as a logical framework [1]. It is
not hard to see that rewriting logic is capable of property and model specifi-
cation [23,10,21]. In the following, we will briefly review rewriting logic and its
verification framework as proposed in [10].

In rewriting logic, a term is constructed by function and constant symbols.
Each term belongs to one or several sorts. Equations specify equivalent terms.
Rewriting rules specify how to transform a term into another. A rewrite theory
consists of equations and rewriting rules for terms. If a rewrite theory does not
contain any rewriting rules, we also call it an equational theory.

We follow the syntax of Maude in our presentation. Maude is a term rewriting
system based on rewriting logic. In Maude, function and constant symbols are
declared by the keyword op. Sorts are declared by the keyword sort. Equations
are specified by eq lhs = rhs ; conditional equations are specified by ceq lhs =
rhs if cond. Similarly, rewriting rules and conditional rewriting rules are defined
by rl [l] : lhs ⇒ rhs and crl [l] : lhs ⇒ rhs if cond respectively, where l is
the label of the rule. The left-hand side of equations and rewriting rules allows
pattern matching. Since there may be several ways to match a term, applying
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a rewriting rule to a given term may yield multiple results. All results obtained
by any of these applications are admissible in rewriting logic.

For any term t, we write [t] for its equivalence class defined by the equations
in a rewrite theory. Let R be a rewrite theory and t, t′ two terms in R. We write

R �l [t]→ [t′]

if there is a rule labeled l in R that rewrites t to t′.
In rewriting logic, there is a universal theory U such that any rewrite theory

R and a term t can be represented as meta-level terms R and t in U respectively.
Furthermore, we have

R �l [t]→ [t′] ⇔ U �l,n [R, t]→ [R, t′]

if t′ is the n-th result obtained by applying the rewriting rule labeled l to t in
R. By the universal theory U , we can manipulate meta-level terms at the object
level. We call the feature that can represent and reason meta-level terms at the
object level as reflection.

3 An Abstract μ-Calculus Model Checker

We begin with the representation of μ-calculus formulae. A μ-calculus formula
is represented by a term of sort MuFormula. Figure 1 shows the symbols in
MuFormula terms. In addition to the sort MuFormula, the sort MuVariable is
declared to be used in fixed points. The underlines ( ) denote the positions of
parameters. For instance, the declaration ∧ specifies that the symbol ∧ is
an infix operator. For modal operators, transition labels are quoted identifiers
corresponding to rewriting rule labels. Hence the set of transition labels �̄ in
〈�̄〉ϕ and [�̄]ϕ is denoted by the built-in sort QidList in 〈 〉 and [ ] respectively.
Finally, the state set r̄ in the fixed point operators μX{r̄}ϕ and νX{r̄}ϕ is
represented as a set of meta-level terms. We define the sort TermSet for the
representation of meta-level term sets. The symbols Mu and Nu form terms
of sort MuFormula from a MuVariable term, a TermSet term, and a MuFormula
term.

sorts MuVariable MuFormula

ops False True : ⇀ MuFormula
op ¬ : MuFormula ⇀ MuFormula
op ∨ : MuFormula MuFormula ⇀ MuFormula
op ∧ : MuFormula MuFormula ⇀ MuFormula
op 〈 〉 : QidList MuFormula ⇀ MuFormula
op [ ] : QidList MuFormula ⇀ MuFormula
op Nu : MuVariable TermSet MuFormula ⇀ MuFormula
op Mu : MuVariable TermSet MuFormula ⇀ MuFormula

Fig. 1. Symbols for μ-Calculus Terms
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eq True = ¬ False
eq ¬ ¬ f = f
eq f ∧ g = ¬ (¬ f ∨ ¬ g)
eq [ L ] f = ¬ (〈 L 〉 ¬ f)
eq Mu X TS f = ¬ (Nu X TS subst (¬ f , X, ¬ X))

Fig. 2. Equations for Derived Operators

To reduce the number of rules in our model checker, Figure 2 provides a set
of equations for derived constant and function symbols. These equations follow
directly from the corresponding logical equivalence relations. For the greatest
fixed point, the substitution of μ-calculus formula is needed. The function subst
(f , Z, g) replaces free occurrences of the variable Z in f by g (Figure 3). If f
is the term False or an atomic proposition, subst leaves it unchanged. If f is a
MuVariable term not equal to Z, the MuVariable term is returned; otherwise, it
is replaced by g. For negative, disjunctive, and existential modal operators, subst
invokes itself recursively. Finally, if f is a fixed point formula, subst substitutes
the variable Z if Z is not bound. Note that we do not need rules for derived
operators.

eq subst (False, Z, g) = False
eq subst (p, Z, g) = p
ceq subst (X, Z, g) = X if X 	= Z
ceq subst (X, Z, g) = g if X = Z
eq subst (¬ f , Z, g) = ¬ subst (f , Z, g)
eq subst (f0 ∨ f1), Z, g) = subst (f0, Z, g) ∨ subst (f1, Z, g)
eq subst (〈 L 〉 f , Z, g) = 〈 L 〉 subst (f , Z, g)
ceq subst (Nu X TS f , Z, g) = Nu X TS (subst (f , Z, g)) if X 	= Z
ceq subst (Nu X TS f , Z, g) = Nu X TS f if X = Z

Fig. 3. Definition of subst

We represent Winskel’s reduction rules as rewriting rules for entailment
terms.1 Let K be a quoted identifier denoting the name of a rewrite theory,
s a meta-level term representing a state, and f a MuFormula term. The entail-
ment term K s � f is of sort Bool. The idea is to rewrite the entailment term
to false or true for any Kripke structure specified by the rewrite theory named
K. It is crucial to use a meta-level term s in entailment terms. The rules of the
rewrite theory K would rewrite the state s had we used the object-level term s
in entailment terms.2

It is straightforward to write the rules for Boolean operators in Maude.
rl [ff ] : K s � False ⇒ false
rl [neg ] : K s � ¬ f ⇒ not (K s � f)
rl [disj] : K s � f0 ∨ f1 ⇒ (K s � f0) or-else (K s � f1)

1 Equational theory would suffice for model checking, but we need rule labels for formal
verification.

2 The calligraphic K is the rewrite theory with the quoted name K.
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eq exists (K, s, f , nil, N) = false
eq exists (K, s, f , l L, N) =

if U 
l,N [K, s] → [K, t] then
(K t 
 f) or-else (exists (K, s, f , l L, N + 1))

else
exists (K, s, f , L, 0)

fi

Fig. 4. Definition of exists

The rule ff rewrites the entailment term K s � False to the built-in Bool
constant term false. Similarly, the rule neg rewrites K s � ¬ f to not (K s �
f). The built-in Bool operator not waits until K s � f rewrites to either false or
true, and then rewrites the Bool constant term to its complementary term. The
rule disj uses the built-in short-circuited Boolean operator or-else. Observe how
the computation is performed by a sequence of rewrites in rewriting logic.

For the existential modal operator, we use the following rule:

rl [ex] : K s � 〈L〉 f ⇒ exists (K, s, f , L, 0)

The function exists (K, s, f , L, N) checks if it is possible to rewrite the
entailment K t � f to true at an L-successor t of s, where N serves as a counter
(Figure 4). The built-in QidList term nil represents the empty quoted identifier
list. Notice the semantics differ from those in [10]. Our semantics do not have
implicit self-loops. If there is no transition label, the function returns false.

On the other hand, the universal theory U finds the N -th rewriting result t
by applying the rule l in K. Then the function exists rewrites the new entailment
term K t � f . If it does not rewrite to true, the next successor of s will be checked
by exists (K, s, f , l L, N +1). On the other hand, if there is no successor of the
current label, we look for a successor by applying the next rule.

Observe how the universal theory U is used to find the successor t of the
current state s. The distinction between the object and meta levels clarifies
the relation between the model specification and the algorithm implementation.
Furthermore, model simulation by reflection allows us to present the algorithm
succinctly.

It is rather straightforward to write the greatest fixed point rules by substi-
tution:

crl [nu] : K s � Nu X TS f ⇒ true
if s isIn TS

crl [nu] : K s � Nu X TS f ⇒ K s � subst (f , X , Nu X ({s} U TS) f)
if not (s isIn TS)

The nu rules check whether the current state s has been visited. If so, it
rewrites the entailment term to true. Otherwise, the current state is added to
the meta-level term set TS and the new set is used in the unfolding of the fixed-
point formula. The function isIn checks whether a meta-level term is in a term
set. Also, the symbol U implements the union of term sets. Both can be easily
defined in an equational theory.
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4 Concrete Implementation

The rules shown in Section 3 use the pre-defined Maude equations for or-else.
Since we cannot fully control internal strategies at object level, we do not know
how or-else works internally. In this section, we will get rid of this uncertainty
and provide a concrete implementation of the rules.

Consider the definition of exists in Figure 4. We would like the term (K t �
f) or-else (exists (K, s, f , l L, N +1)) to rewrite K t � f first, even though there
are equational rules for exists in the other subterm. In order not to reduce the
second subterm unintentionally, we will not construct a term with the function
symbol exists until necessary.

sort SuccResult
op � , , � : Term QidList Nat ⇀ SuccResult
op none : ⇀ SuccResult
op succ : Qid Term QidList Nat ⇀ SuccResult
eq succ (K, s, nil, N) = none
eq succ (K, s, l L, N) =

if U 
l,N [K, s] → [K, t] then
� t, l L, N + 1 �

else
succ (K, s, L, 0)

fi

Fig. 5. Definition of succ

To realize the idea, we define a new function succ (K, s, L, N) which returns
a SuccResult term � t, L′, N ′ � if s has a successor t by applying the rules in
L (Figure 5). If L is nil, it returns none. Otherwise, succ (K, s, l L, N) checks
whether s has the N -th successor t by applying rule l. If so, it returns � t, l L,
N +1 �. If not, it returns another successor of s by applying the remaining rules
in L.

op wrapper : Bool Qid Term MuFormula SuccResult ⇀ Bool
eq wrapper (true, K, s, f , R) = true
eq wrapper (false, K, s, f , none) = false
eq wrapper (false, K, s, f , � t, L, N �) =

wrapper (K t 
 f , K, s, f , succ (K, s, L, N))

Fig. 6. Definition of wrapper

With the function succ, we can implement the rule ex by the wrapper function
(Figure 6) as follows.

rl [ex] : K s � 〈 L 〉 f ⇒ wrapper (false, K, s, f , succ (K, s, L, 0))
To check whether s satisfies 〈 L 〉 f , we compute the first successor of s by

succ (K, s, L, 0) and pass the result to wrapper. The wrapper function will check
whether the successor satisfies f and compute the next successor. Observe that
wrapper does not have a subterm formed by wrapper.
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sorts Mode Proc

op : Proc Proc ⇀ Proc
ops outCS reqCS inCS : ⇀ Mode
op � , , � : Nat Mode Bool ⇀ Proc

rl [request0] : � 0, outCS, X � � 1, N , Y � ⇒ � 0 , reqCS, Y � � 1, N , Y �
rl [request1] : � 0, M , X � � 1, outCS, Y � ⇒ � 0, M , X � � 1, reqCS, not X �
crl [enter0] : � 0, reqCS, X � � 1, N , Y � ⇒ � 0, inCS, X � � 1, N , Y �

if N = outCS or X 	= Y
crl [enter1] : � 0, M , X � � 1, reqCS, Y � ⇒ � 0, M , X � � 1, inCS, Y �

if M = outCS or X = Y
rl [leave] : � i, inCS, X � � j, N , Y � ⇒ � i, outCS, X � � j, N , Y �

Fig. 7. Peterson’s Algorithm

We can use wrapper to implement the rule disj as well. The idea is to form a
SuccResult term without invoking succ.

rl [disj] : K s � f0 ∨ f1 ⇒ wrapper (K s � f0, K, s, f1, � s, nil, 0 �)
Similarly, the nu rules can be simplified by wrapper:

rl [nu] : K s � Nu X TS f ⇒
wrapper (s isIn TS, K, s, subst (f , X , Nu X ({ s } U TS) f), � s, nil, 0 �)

5 Verification of Peterson’s Algorithm

We verify Peterson’s algorithm [18] by our model checker as an example. The
mutual exclusion algorithm is shown in Figure 7. Let i be 0 or 1, M a Mode
term (outCS, reqCS, or inCS), and X a Bool term, a process term of sort Proc
is represented by � i, M , X �. The rules request0, request1, enter0, enter1,
and leave implement the transitions of Peterson’s algorithm by rewriting the
composition of two process terms.

In the rule request0, process 0 moves from outCS to reqCS by setting its local
Bool term to that of process 1. When process 0 is in reqCS, it moves to inCS if
process 1 is in outCS or the two local Bool terms are not equal (the rule enter0).
Finally, any process can move out of inCS by the rule leave.

Define the initial state term init to be � 0, outCS, false � � 1, outCS, true
� and the QidList term labels to be (’request0 ’request1 ’enter0 ’enter1 ’leave).
We are interested in verifying whether the two processes cannot be in the cri
tical section at the same time. Hence, we check whether the entailment term
eq prop0 = ’PETERSON init � Nu X {} (¬ in-cs (0) ∨ ¬ in-cs (1)) ∧ [ labels ] X

rewrites to true or not. The rules for the atomic proposition in-cs (i) is defined
as follows.

rl [AP] : ’PETERSON s � in-cs (i) ⇒ critical (s, i)

eq critical ( � 0, M , X � P , 0) = (M = inCS)
eq critical ( � 1, N , Y � P , 1) = (N = inCS)

-
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Similarly, we can check if process 0 always enters the critical section first. The
corresponding entailment term is the following:
eq prop1 = ’PETERSON init � Mu X {} (in-cs (0) ∨ (¬ in-cs (1) ∧ [ labels ] X))

Finally, we would like to check if process 0 can enter the critical section
infinitely often.
eq prop2 = ’PETERSON init � Nu X {} Mu Y {} 〈 labels 〉 ((in-cs (0) ∧ X) ∨ Y)

The entailment terms prop0, prop1, and prop2 rewrite to true, false, and true
in 0.5, �0.1, �0.1 seconds by Maude respectively.3 The model checker contains
250 lines of Maude code. The concise implementation shows that reflection in-
deed helps in writing an explicit-state model checker. Since model simulation in
explicit-state model checkers is implemented by the universal theory U , program-
mers can pay more attention to the model checking algorithm. Additionally, the
short implementation may be feasible for formal analysis. Theorem provers based
on rewriting logic (such as ITP [5]) may be used to verify our implementation
semi-automatically.

6 Model Checking μ-Calculus Model Checker

The correspondence between Winskel’s rules and the concrete implementation
is less obvious than that of abstract rules. Additionally, a typo or a missing
case in the definitions of subst, succ, wrapper, and term sets may make our
implementation incorrect, even if the correspondence is ensured. The verification
of Peterson’s algorithm in Section 5 only shows that our model checker has one
intended behavior. It does not imply all internal rewriting strategies will produce
the same result. Particularly, if our model checker could yield contradictory
results or fail to rewrite an entailment term by different strategies, the user
would be very confused.

These questions call for the analysis of our model checker. Since the abstract
algorithm is known to be sound, we are more interested in the correctness of our
particular implementation. Specifically, we would like to verify if the concrete
implementation always rewrites the entailment terms prop0, prop1, and prop2 to
true, false, and true respectively.

This problem can be formalized as follows. Define a Kripke structure M0 =
(E, RL, ⇒, prop0, P ) where E is the set of all entailment terms, RL the set of
all rule labels, and

P (e) =

⎧⎨
⎩
{ isTrue } if e = true
{ isFalse } if e = false
∅ otherwise

.

For any two entailment terms e and e′, e
l⇒ e′ if e rewrites to e′ by applying

the rule l in our model checker. To verify whether the term prop0 always rewrites
to true, it amounts to checking whetherM0 |= μX. isTrue ∨[RL]X . Similarly, we

3 The experiments are conducted in a 2.8GHz Pentium 4 with 2GB memory running
Fedora Core 4 Linux system.
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can define two Kripke structuresM1 andM2 with initial states prop1 and prop2
respectively, and check M1 |= μX. isFalse ∨ [RL]X and M2 |= μX. isTrue ∨
[RL]X . Hence we can resolve the aforementioned questions if we solve these
model checking problems.

With the help of reflection, these problems can be solved rather easily. No-
tice that the Kripke structures M0, M1, and M2 are infinite-state structures.
There are countably infinite entailment terms in E. Fortunately, the number of
reachable entailment terms is finite because our model checker always termi-
nates. Since both the local model checking and the Maude LTL model checking
algorithms explore the reachable states only, they can be used to solve these
problems.

6.1 Checking with Abstract Local Model Checker

Let M be the quoted identifier of a model checking theory, e an entailment term,
and f a MuFormula term. We define the abstract entailment term M e �� f to be
of sort Bool. It is easy to implement Winskel’s reduction rules in an equational
theory (Figure 8). However, specifying properties of a model checker exposes a
subtle semantic issue. Consider the following entailment term:

’PETERSON init � False.

It rewrites to false trivially. However, init also satisfies μX. isTrue ∨ [RL]X .
This is because our model checker always terminates after a finite number of
rewrites. Subsequently, the property [ L ] f will be true eventually for any
QidList term L and MuFormula term f . In the example, the least fixed point
rewrites to a disjunction after one unfolding. But the second disjunct rewrites
to true because there is no successor.

Our solution is to add implicit self-loops to irreducible terms. If an entailment
term has successors, we leave them unchanged. But if an entailment term does
not have any successor, we make the entailment term to be its only successor.
This can be done by the meta-exists function (Figure 9).

The function meta-exists checks if any successor has been found. If there is no
label, it reduces to false if the entailment term e has other successors. Otherwise,
meta-exists checks whether the current entailment term satisfies the MuFormula
term f . Effectively, the entailment term e is its only successor when no successor
can be found.

eq M e 

 False = false
eq M e 

 ¬ f = ¬ (M e 

 f)
eq M e 

 f0 ∨ f1 = (M e 

 f0) or-else (M e 

 f1)
eq M e 

 〈 L 〉 f = meta-exists (M , e, f , L, 0, false)
ceq M e 

 Nu X TS f = true

if e isIn TS
ceq M e 

 Nu X TS f = M e 

 subst (f , X, Nu X ({ e } U TS) f)

if not (e isIn TS)

Fig. 8. Abstract Local Model Checker
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eq meta-exists (M , e, f , nil, N , hasSuccessor ) =
if hasSuccessor then false else M e 

 f fi

eq meta-exists (M , e, f , l L, N , hasSuccessor ) =
if U 
l,N [M, e] → [M, f ] then

(M f 

 f) or-else meta-exists (M , e, l L, N + 1, true)
else

meta-exists (M , e, f , L, 0, hasSuccessor )
fi

Fig. 9. Definition of meta-exists

Let LOCAL-MODEL-CHECK be the name of our model checking rewrite theory
and rules the QidList (’AP ’ff ’neg ’disj ’ex ’nu). To verify whether prop0 will
always rewrite to true, we check whether the entailment term
eq meta-prop0 = ’LOCAL-MODEL-CHECK prop0 �� Nu X {} isTrue ∨ [ rules ] X
reduces to true where

eq M e �� isTrue = (e = true).

Similarly, we define entailment terms meta-prop1 and meta-prop2 as follows.
eq meta-prop1 = ’LOCAL-MODEL-CHECK prop1 �� Nu X {} isFalse ∨ [ rules ] X
eq meta-prop2 = ’LOCAL-MODEL-CHECK prop2 �� Nu X {} isTrue ∨ [ rules ] X
where

eq M e �� isFalse = (e = false).

Maude reduces meta-prop0, meta-prop1, and meta-prop2 to true in 341.5, 0.3,
6.5 seconds respectively. Hence the abstract model checker verifies that our model
checker always rewrites prop0, prop1, and prop2 to true, false, and true respec-
tively, independent of rewrite strategies.

6.2 Checking with Maude LTL Model Checker

Alternatively, we can use the built-in Maude LTL model checker to verify
whether prop0, prop1, and prop2 rewrite to true, false, and true regardless of
rewrite strategies. The Maude LTL model checker uses an automata-theoretic
algorithm to verify LTL properties. It is implemented in C++ and integrated in
Maude version 2 [10,6].

The Maude LTL model contains several equational theories. Related LTL
symbols are defined in the theory LT L. The sorts Prop and Formula defined in
LT L are used for atomic proposition and LTL formula terms. We first define
two atomic proposition terms:

op isFalse isTrue : ⇀ Prop

To define the reduction rules for atomic proposition terms, we use the mod-
eling term |= defined in the theory SAT ISFACT ION :

subsort Entailment ≺ State
eq e |= isFalse = (e = false)
eq e |= isTrue = (e = true).
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The term |= takes a term of sort State (defined in SAT ISFACT ION ) and
a Prop term to form a Bool term. The equations for isFalse and isTrue tell the
Maude LTL model checker how to reduce a modeling term to a Bool term.

The property “p holds eventually” is represented by the LTL term ♦ p. Thus,
the properties that we would like to verify are represented by ♦ isFalse and ♦
isTrue. Finally, we use the built-in function modelCheck to verify whether an
initial entailment term rewrites to a Bool term eventually:

modelCheck (prop0, ♦ isTrue)
modelCheck (prop1, ♦ isFalse)
modelCheck (prop2, ♦ isTrue)

The Maude LTL model checker is able to verify these three properties in 2.9,
�0.1, 0.1 seconds respectively. The built-in model checker performs significantly
better than our abstract model checker. Since the built-in model checker is im-
plemented in C++, it is expected to run much faster than our abstract model
checker. On the other hand, we are free to modify our abstract model checker
for different purposes. For instance, the built-in LTL model checker may not ter-
minate on structures with infinite reachable states. But a bounded local model
checker for such structures has been implemented using the same framework
in [22].

7 Conclusion and Future Work

Reflection has been used for formal metareasoning of membership equational
theories [2] and semantics of specifications [7]. In this paper, we present a concise
implementation of a local model checking algorithm in the reflective language
Maude. We show how the implementation is simplified by exploiting reflection
and then verify Peterson’s algorithm with our implementation in Maude. In our
model checker, the model behavior is explored by the reflective feature of the
language. The universal theory is used as a model simulator and thus simplifies
the implementation. Since model simulation is required in explicit-state model
checking algorithms, we feel the technique can simplify the implementations of
other explicit-state algorithms as well.

More interestingly, we are able to verify our implementation by applying re-
flection again. We define a Kripke structure of entailment terms characterizing
the behavior of our model checker. Hence the verification of our model checkers
can be formalized as model checking problems. We then use an abstract local
model checker and the Maude LTL model checker to solve these problems. Reflec-
tion not only simplifies our implementation of an explicit-state model checking
algorithm, but also allows us to model-check our model checker rather easily. To
the best of our knowledge, this is the first work which proposes an automatic
formal verification technique of model checkers by reflection. From the simplic-
ity of our approach, we believe it will be of use to ensure the quality of other
verification tools as well.

Currently, we are interested in applying our technique in other model check-
ing algorithms. Particularly, the analysis of binary decision diagram-based or
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SAT-based algorithms would be more useful to model checking community. We
are investigating the theory developed in [17,25] and specifying a BDD-based
algorithm in rewriting logic as the first step.

Acknowledgments. The author would like to thank anonymous reviewers for
their constructive comments and suggestions in improving the paper.
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Abstract. PRISM is a probabilistic-logical programming language
based on Prolog. We present a PRISM-implementation of a general model
for polyphonic music, based on Hidden Markov Models. Its probabil-
ity parameters are automatically learned by running the built-in EM-
algorithm of PRISM on training examples. We show how the model can
be used as a classifier for music that guesses the composer of unknown
fragments of music. Then we use it to automatically compose new music.

Keywords: PRISM, probabilistic-logical programming, music classifica-
tion, automatic music composition.

1 Introduction

Music composers are bound to certain - mostly unwritten - rules, defining the
musical genre of their work. In this paper we will construct a general model to
describe such rules.

Many formalisms have been proposed to express strict, logical rules. A well-
known example is the logic programming language Prolog. However, most mu-
sical genres are hard or impossible to describe as a set of strict rules. It seems
to be inherent to music to be somewhat ‘random’ and ‘organic’.

Because of this inherent randomness, we will work in a probabilistic context,
in which we represent musical rules as probabilistic experiments with some un-
known probability distribution. We use a variant of Hidden Markov Models, for
which the probability distributions can be computed in an automated way from
a set of examples.

Probabilistic-logical programming is an extension of logic programming which
allows programmers to express both statistical and relational knowledge in a
natural way. We will use this formalism to build our model.

Traditionally, two types of models for music are distinguished. Synthetic mod-
els are used to generate music (automatic composition). Analytic models are
designed to analyze (e.g. to classify) music. Conklin [2] pointed out that a gen-
eral model can be applied to both tasks. A statistical analytic model can (in
principle) be sampled to generate music.

The goal of this paper is to provide empirical evidence for the feasibility of
implementing such a dual-use model, while showing the expressiveness and power
of probabilistic-logical formalisms.

P. Van Hentenryck (Ed.): PADL 2006, LNCS 3819, pp. 60–72, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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The paper is organized as follows. In section 2 we introduce a new representa-
tion for music that we use in the application. Section 3 recalls the basics of the
programming language PRISM and shows how to model Hidden Markov Models
in this language. In Section 4 we describe the system and the top-level of its
implementation in PRISM. We report on our experiments with the system in
Section 5 and conclude in Section 6.

2 Music Representation

For simplicity, we will consider only three aspects of music: melody (note pitch
and octave), rhythm (note duration) and polyphony (different voices sounding
together). We will ignore aspects like volume, timbre of instruments, articulations
like the accent, staccato, portato, legato, . . .

To represent a music score in a form which is suitable for both Prolog-like
environments and Markov-like models, we will use the following notation, which
we call the Interwoven Voices List (IVL) notation:

Definition 1. An IVL of length n with v voices is a Prolog list term of the form

[(D0, V0, N0), (D1, V1, N1), . . . , (Dn, Vn, Nn)]

where Di are positive integer numbers and Vi and Ni are Prolog lists of length
v. The elements of Vi are atoms: either the atom new or the atom old. The
elements of Ni are either a positive integer number or the atom r. If for some
i (< n) and j (≤ v), the jth element of Ni and Ni+1 are different, then the jth

element of Vi+1 must be new. If for some i (< n) and j (≤ v), the jth element
of both Ni and Ni+1 is r, then the jth element of Vi+1 must be old.

We say an IVL of length n consists of n phases. Di is the duration of the ith

phase. The list Ni represents the notes that are played in every voice in the ith

phase. If no note is played by some voice, we use the symbol r (rest). We assume
every voice to play only one note at the same time – if not, we can split them into
as many voices as necessary. Note numbers encode both the pitch (c, cis=des, d,
. . . , a, ais=bes, b) and the octave of a note. For example, c4 is represented as 48,
cis4 as 49, d4 as 50, c5 as 60. When in some voice a note is followed by the same
note, there are two possibilities: two distinct notes are played, or one long note
is played (covering more than one phase because of shorter notes in the other
voices). The list Vi indicates for every voice whether a new note is played (new)
or the note played in the previous phase is continued (old). Figure 1 illustrates
the representation on a small example.

3 PRISM and HMM’s

In this section we will briefly introduce the PRISM programming language [9,10]
and how to use it for Hidden Markov Models [1].

A PRISM-program consists of a logical and a probabilistic part. The prob-
abilistic part defines a probability distribution PF on a set F of collections of
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[ (16,[new,new],[55,r]), (16,[old,new],[55,36]),

(16,[new,new],[60,38]), (16,[old,new],[60,40]),

(16,[new,new],[59,41]), (16,[old,new],[59,38]),

(16,[new,new],[60,40]), (16,[old,new],[60,36]),

(32,[new,new],[62,43]), (32,[old,new],[62,31]) ]

Fig. 1. The Interwoven Voice List (IVL) notation

ground facts. The logical part takes the form of a definite Horn clause program
D, which serves to extend this distribution PF to a distribution on the set of
Herbrand interpretations of the program. More precisely, the probability of an
interpretation I is defined as the sum of all probabilities PF (F ) of sets of facts
F ∈ F , for which the least Herbrand model of (F ∪D) equals I.

The facts that can appear in such a set F are all of the special form msw
(s,i,v), with s, i, and v ground terms. A term s in such an atom is called
a multivalued switch and it represents a random variable, which can take on a
value from a certain domain. A declaration values(t, [v1, . . . , vn]), with t a
term and all vi ground terms, can be used to specify that the domain dom(s)
of s is 〈v1, . . . , vn〉, for all switches s which are ground instantiations of the
term t. For each switch s and each value v from dom(s), the probability Ps(v)
of s taking on this particular value needs to be defined. This is done using a
query set sw(t, [α1, . . . , αn]), with t a term, the αi real numbers and n the
number of values in dom(s). The meaning of this is that Ps(vi) = αi, with
dom(s) = 〈v1, . . . , vn〉, for each switch s which is a ground instantiation of t.

Each set F ∈ F is of the form {msw(s, i,vi
s) | s is a switch, i ∈ I}, where I is

some set of ground terms used to distinguish consecutive trials involving the same
switch and each vi

s ∈ dom(s). All such trials are assumed to be probabilistically
independent, i.e., for every such set F :

PF (F ) =
∏

msw(s,i,v)∈F

Ps(v).

Recently, an alternative syntax has been proposed, where instead of msw
(s,i,v)-atoms, msw(s,v)-atoms are now used. Programs in this new syntax
should be read as though each occurrence of such an atom had an implicit extra
argument i which distinguishes it from all other occurrences of this predicate in
the program.
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The PRISM system has several useful properties. Firstly, the semantics of its
language is easy to understand and quite natural. Secondly, the system offers an
efficient learning algorithm, based on the well-known EM algorithm, which is able
to estimate the probabilistic parameters Ps(v), based on a set of observations.
The built-in learning algorithm is provably as efficient as special purpose versions
of the EM algorithm, such as the Baum-Welch algorithm for Hidden Markov
Models, the Inside-Outside algorithm for Probabilistic context-free grammars,
and the EM algorithm using evidence propagation for singly-connected Bayesian
networks, provided that the models are appropriately programmed in PRISM.

For example, consider the experiment of flipping a coin a number of times.
We could model this as follows:

target(flipN, 2).
values(coin, [heads,tails]).
flipN(0, []).
flipN(N, [T|Ts]) :- N>0, msw(coin,T), N1 is N-1, flipN(N1,Ts).

Let us say the coin is fair, i.e. both outcomes are equally probable. We can
use the set sw built-in to set the probability distribution of the coin experiment
accordingly: set sw(coin, [0.5,0.5]). Now we can use sample(flipN(N,S))
to get a randomly generated sequence S of N coin flips.

Now let us assume we do not know the probability distribution of coin –
maybe the coin has been tampered with – but we do have a sequence S2 of N2
coin flip outcomes. In this case, we can use learn(flipN(N2,S2)) to estimate
the probabilities. In this toy example, the result will simply correspond to the
relative frequencies. In the learning phase, for every training example, all its
explanations are enumerated, i.e. all combinations of msw outcomes that lead to
the training example. In the coin flipping example there is just one explanation
for every sequence of coin flips, but in general there can be many explanations
for a single observation.

S S S0 1 2

0.7 0.8 1

0.3 0.2

a:0.2 b:0.9 b:0.3
c:0.7c:0.1b:0.8

Fig. 2. A Hidden Markov Model

To illustrate how PRISM can be used to model HMMs, we consider the HMM
in Figure 2. At each time point, this HMM probabilistically chooses both a
successor state and an output symbol. Both these choices depend on the current
state. To model this in PRISM, we need a switch trans(s), representing the
choice of a successor state, and a switch out(s), representing the choice of an
output symbol, for every state s.
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values(trans(s0), [s0,s1]).
values(trans(s1), [s1,s2]).
values(trans(s2), [s2]).
values(out(s0), [a,b]).
values(out(s1), [b,c]).
values(out(s2), [b,c]).

Now, the state of the HMM at time T can be defined as follows:

state(s0,0).
state(Next, T) :- T > 0, TPrev is T - 1,
state(Prev, TPrev), msw(trans(Prev), Next).

The output at time T can be defined as:

out(Char, T) :- state(State, T), msw(out(State), Char).

We can now define a predicate hmm(S, T ) to express that string S is generated
after T steps, by simply gathering all the produced symbols into a list:

hmm([], 0).
hmm([Char | Chars], Time) :-
Time > 0, TimePrev is Time - 1,
out(Char, TimePrev), hmm(Chars, TimePrev).

The probabilities for the various switches can be set as follows:

:- set_sw(trans(s1), [0.8,0.2]), set_sw(trans(s2), [1]),
set_sw(trans(s0), [0.7,0.3]), set_sw(out(s0), [0.2,0.8]),
set_sw(out(s1), [0.9,0.1]), set_sw(out(s2), [0.3,0.7]).

Alternatively, these values can also be estimated on the basis of a set of hmm/1
observations, which are called training examples.

When the switch probabilities are set, the model can be sampled using the
sample/1 built-in. For example, the query sample(hmm(L,10)) would result in
unifying L to the length 10 list outputted by a random execution of the given
HMM. The probability of an observed sequence can be computed using the
prob/2 built-in.

4 Modeling IVL-Music in PRISM

Hidden Markov Models sequentially process data streams. For analytic music
models, this approach makes sense: after all, this is how a human listener per-
ceives music. However, if the model is also to be used as a synthetic music model,
it forces a left-to-right composing strategy, which is not the way human com-
posers usually work. Therefore, we will use nested HMMs, based on the intuition
of global and local music structure. The global structure of a piece of music is
captured by transitions between various Song States (SS). Within every such
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SS0 SS1 · · · SS7

V S1 V S2 V S3

V S1 V S2 V S3

· · ·

V S1 V S2 V S3

V S1 V S2 V S3

· · ·

V S1 V S2 V S3

V S1 V S2 V S3

· · ·

Fig. 3. Nested HMM structure

song state, there is one HMM for each voice, which captures the local structure
for that particular voice by transitions between various Voice States (VS). This
principle is illustrate in Figure 3.

A music fragment is encoded in facts of the form song(NV,L,BT,IVL), where
IVL is an IVL of length L with NV voices. For all examples, we manually deter-
mined the base tone (BT) to allow the model to transpose the notes. Doing this,
everything is learned modulo translations in pitch. All probabilities are learned
by performing the PRISM built-in EM algorithm on a set of song/4 facts.

We will now discuss the main predicates of the source code of our model. The
core of the model is a nested Hidden Markov Model. Every transition into the
next phase probabilistically selects one out of seven “song states”, the proba-
bilities depending on the current song state. For every voice, one out of three
“voice states” is chosen, the probabilities depending on the current song state
and the current voice state for that voice. All voice output (pitches, octaves,
old/new and rests) probabilities depend on the current song state and the cur-
rent voice state for the relevant voice. Most song states restrict the domain for
output pitches to some harmonically relevant subdomain. The phase duration
probabilities depend only on the current song state.

Note that the number of song states s and the number of voice states v
can be chosen arbitrarily. The number of probability parameters to learn grows
linearly as sv grows, but the number of explanations (and hence the duration of
the learning phase) for a single training example IVL of length l with n voices
roughly corresponds to (svn)l. Since the training fragments have to be long
enough to exhibit some musically meaningful properties, we are forced to use
small values for the other variables. We used the values s = 7 and v = 3, and for
training n = 2 and l ≈ 20, because larger values quickly became computationally
infeasible. However, they are probably too low to capture sufficient detail. The
quality of the model can be improved by using more states, although it will also
become more likely to obtain insufficiently generalizing parameter values in the
training phase. The domains of the different probabilistic experiments are given
below:
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values(tr_ss(_PrevS),[1,2,3,4,5,6,7]). % song state transitions
values(tr_vs(_S,_PrevV),[a,b,c]). % voice state transitions
values(out_D(_S),[8,16,32,48,64,96,128]). % durations
values(out_V(_S,_V),[old,new]). % old or new note
values(out_rest(_S,_V),[rest,note]). % rest or real note
values(out_octave(_S,_V),[-2,-1,0,1,2]). % relative octave
values(out_modnote(1,_V),[0, 4, 7 ]). % c e g
values(out_modnote(2,_V),[0, 2, 4, 5, 7, 9, 11]). % c d e f g a b
values(out_modnote(3,_V),[0, 2, 4, 6, 7, 9, 11]). % c d e fis g a b
values(out_modnote(4,_V),[0, 2, 4, 5, 7, 9, 10]). % c d e f g a bes
values(out_modnote(5,_V),[0, 3, 4, 5, 7, 8, 10]). % c es f g as bes
values(out_modnote(6,_V),[0, 2, 3, 5, 9, 10]). % c d es f a bes
values(out_modnote(7,_V),[0,1,2,3,4,5,6,7,8,9,10,11]). % all pitches

The main loop of the program is a nested HMM: after every output observa-
tion, a state transition is made.

song(NV,L,BT,IVL):-
initlist(NV,4,O_prev), initlist(NV,a,VoiceState),
hmm(NV,1,L,1,VoiceState,BT,IVL,_,O_prev).

% length L; NV voices; base tone BT; current phase (D,V,N)
hmm(NV,T,L,SongState,VoiceState,BT,[(D,V,N)|Y],N_prev,O_prev) :-

T < L, T > 1, T1 is T+1,
observe(NV,SongState,VoiceState,BT,D,V,N,N_prev,O_prev),
tr_voicestates(NV,SongState,VoiceState,VS_Next),
msw(tr_ss(SongState),SS_Next),
octaves(BT,N,O_prev,N_octave),
hmm(NV,T1,L,SS_Next,VS_Next,BT,Y,N,N_octave).

The observe/9 predicate checks one IVL phase (D, V, N). First the phase
length D is checked. Then the list elements of V and N are checked one by one.

observe(NV,SongState,VoiceState,BT,D,V,N,N_prev,O_prev) :-
msw(out_D(SongState),D),
nlist(NV,SongState,VoiceState,BT,N,V,N_prev,O_prev).

For every note, it is first determined whether it is a rest or a “real” note.
The note value of the “real” note is checked in check real note. When it is
identical to the previous note, we check whether it is new or old. Note that
these experiments depend on both the song state (which is shared by all voices
in given IVL phase) and the voice state of the corresponding voice.

nlist(NV,SongState,[VoiceState|RVS],BT,[N|RN],V,[PN|RPN],PrO) :-
NV > 0, NV1 is NV-1, V=[ON|RON], PrO=[PO|RPO],
check_note(SongState,VoiceState,BT,N,PO), % check note itself
check_new(SongState,VoiceState,N,PN,ON), % check old/new
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nlist(NV1,SongState,RVS,BT,RN,RPN,RON,RPO).
nlist(0,_,[],_,[],[],[],[]).

check_note(SongState,VoiceState,BT,Note,PrevOct) :-
msw(out_rest(SongState,VoiceState),X),
check_note(SongState,VoiceState,BT,Note,PrevOct,X).

check_note(_,_,_,r,_,rest).
check_note(SongState,VoiceState,BT,Note,PrevOct,note) :-

check_real_note(SongState,VoiceState,BT,Note,PrevOct).

check_new(SongState,VoiceState,X,X,OldNew) :-
number(X), msw(out_V(SongState,VoiceState),OldNew).

check_new(_,_,r,r,old).
check_new(_,_,A,B,new) :- A \= B.

In check real note, we check the pitch and the relative octave, i.e. the dif-
ference compared to the octave of the previous note (of that voice).

Note that thus far, the program can be used both for analysis and generation,
i.e. we can call the song(NV,L,BT,IVL) predicate with instantiated or partially
uninstantiated arguments. However, when we are checking the note values, we
will need two clauses for check real note, one for analysis/training and one for
synthesis/sampling. When sampling, sanity check is called to avoid too high
or too low notes: it enforces the octave to stay in the range 2-6.

check_real_note(SongState,VoiceState,BT,Note,PrevOct) :-
number(Note), % training
Pitch is (Note-BT) mod 12,
OctDiff is ((Note-BT) // 12) - PrevOct,
msw(out_modnote(SongState,VoiceState),Pitch),
msw(out_octave(SongState,VoiceState),OctDiff).

check_real_note(SongState,VoiceState,BT,Note,PrevOct) :-
var(Note), % sampling
msw(out_modnote(SongState,VoiceState),Pitch),
msw(out_octave(SongState,VoiceState),OctDiff),
NewOctave is PrevOct + OctDiff,
sanity_check(NewOctave,SaneNewOctave),
Note is BT + Pitch + 12*SaneNewOctave.

5 Experimental Results

5.1 Classification

Pollastri and Simoncelli [7] have used HMMs for classification of melodies by
composer. In a similar way, we will use our model to classify fragments of poly-
phonic music. To keep things simple, we will consider only two composers: Bach
and Mozart.
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id PB PM guess: reality

b01 -129 > -655 Bach
b02 -119 > -585 Bach BMV 784
b03 -119 > −∞ Bach (Bach)
b04 -116 > −∞ Bach 2 voices
b05 -121 > −∞ Bach
m01 -297 < -136 Mozart KV 487
m02 -124 < -114 Mozart number 7
m03 -302 < -120 Mozart (Mozart)
m04 -203 < -155 Mozart 2 voices
m05 -152 < -116 Mozart
b06 -144 > -236 Bach
b07 -189 > -422 Bach
b08 -178 > -216 Bach BMV 798
b09 -158 > -317 Bach
b10 -156 > -608 Bach (Bach)
b11 -166 > -234 Bach
b12 -174 > -492 Bach
b13 -161 > -166 Bach 3 voices
b14 -153 > -464 Bach
b15 -171 > -176 Bach
m06 −∞ < -553 Mozart
m07 −∞ < -230 Mozart
m08 -431 < -234 Mozart KV 229
m09 -283 < -165 Mozart
m10 -424 < -189 Mozart (Mozart)
m11 -324 < -119 Mozart
m12 -429 < -175 Mozart
m13 -397 < -169 Mozart 3 voices
m14 -330 < -179 Mozart
m15 -381 < -175 Mozart

(a) all information

id PB PM guess: reality

b01 -132 > -140 Bach
b02 -118 > -125 Bach BMV 784
b03 -121 > -142 Bach (Bach)
b04 -122 > -140 Bach 2 voices
b05 -121 > -143 Bach
m01 -110 < -103 Mozart KV 487
m02 -100 > -102 Bach number 7
m03 -120 < -110 Mozart (Mozart)
m04 -102 < -100 Mozart 2 voices
m05 -99 > -101 Bach

b06 -144 > -162 Bach
b07 -152 > -158 Bach
b08 -161 > -171 Bach BMV 798
b09 -162 > -168 Bach
b10 -155 > -156 Bach (Bach)
b11 -165 > -169 Bach
b12 -168 > -172 Bach
b13 -156 > -167 Bach 3 voices
b14 -156 > -166 Bach
b15 -147 > -154 Bach
m06 -256 < -178 Mozart
m07 -177 < -149 Mozart
m08 -237 < -167 Mozart KV 229
m09 -153.7 < -153.6 Mozart
m10 -179 > -182 Bach (Mozart)
m11 -162 < -109 Mozart
m12 -174 < -168 Mozart
m13 -187 < -155 Mozart 3 voices
m14 -156 > -169 Bach
m15 -185 < -167 Mozart

(b) ignoring durations

Fig. 4. Classification results

Using the built-in EM algorithm of PRISM, we train two instances of the
model, MB and MM , the former using fragments from works of Bach, the latter
using fragments of Mozart. To classify a new, unknown fragment we compute
the probabilities of it being the output of MB or MM . The fragment is classified
as being work of the composer for which the probability is highest.

plus .1em The computational complexity of this method is dominated by the
training phase – which took something in the order of tens of minutes on a Pen-
tium 4 machine with 1 gigabyte of RAM. Computing the probability of an un-
known fragment took only one or two seconds. This is an interesting property of
this approach, since training the model has to be done only once for every clas-
sification category, after which any number of fragments can be classified in rea-
sonable time.
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The experiments were originally performed in PRISM 1.6. In the preparation
for this paper, we repeated some experiments using PRISM 1.8.1, with com-
parable results. For training MB, 72 fragments from Bachs Inventions (BWV
772,773,775,779) were used. We used 50 fragments from Mozarts duets for horn
(KV 487, numbers 1, 2, 5, 8, 9, 10 and 12) to train MM . Together, this amounts
to 1428 IVL phases for MB and 948 IVL phases for MM . All training examples
have two voices.

Figure 4(a) gives an overview of the classification results for 30 other frag-
ments. The numbers PB and PM are the log-probabilities of the fragment being
the output of MB and MM , respectively. If PB > PM , the fragment is classified
as “composed by Bach”, otherwise it is classified as “composed by Mozart”. For
all 30 fragments, the classification was correct. This is a remarkable result, since
20 of these fragments were chosen from totally different work compared to the
fragments used for training the models, and they have three voices, not two like
the training examples.

In the fragments we used, it has to be noted that the phase durations Di

are most often 16th notes in pieces of Bach, while in pieces of Mozart the 8th
note is more prominent. As a result, the correct classification may be mostly
based on the typical durations of the IVL phases. We want of course to find out
whether the trained models (implicitly) contain more musical style properties
than just the notational tempo. To check whether our classification method still
works without the strong duration differences, we could preprocess the train-
ing and testing data, scaling it to a common tempo. Instead, we repeated the
experiment, adapting our model so that it does not consider the phase dura-
tion information at all. By not considering the durations, only the melody and
polyphony information can be used to classify the fragments. In figure 4(b), the
results are given for this new classification method, which does not take into
account the phase durations. Of the 30 fragments, 26 were classified correctly.
This is of course significantly better than random guessing.

5.2 Music Generation

We have also used our model to generate music: first we have trained the model
using one of the training sets, then we sample the model using the sample/1
built-in. Input parameters are the first notes, the base tone and the length (num-
ber of IVL phases). We arbitrarily chose (respectively) c3 and e4 of duration one
eight, base tone 0 (c), and 30 phases. Two typical examples of the resulting out-
put are given in Figure 5, and can be downloaded at [11].

Although the output does not even come close to a human-composed piece,
it seems to contain musical style elements of the training examples. It cannot
directly be used to generate acceptable full songs, but it might be an interesting
source of inspiration for human composers.

We expect that using more refined models (e.g. with more HMM states and
adding the concept of time signature to avoid excessive syncopation) and us-
ing larger sets of training examples, the style of the generated music would be
increasingly indistinguishable from the style of the original training examples.
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(a) Trained with fragments of Bach

(b) Trained with fragments of Mozart

Fig. 5. Sample of the model trained with fragments of Bach and Mozart

6 Conclusion

We have presented a simple, yet general model for music. It can handle any
number of voices. The probability parameters can automatically be adjusted for
any musical genre given sufficiently many training examples of the genre.

The classification method presented in section 5.1 seems to be a promising
approach, given the outcome of the experiments. Experiments on a larger scale,
involving more composers and larger datasets, have to be performed to get an
accurate idea of the scope of its practical applicability.

In its current form, the model described in this paper cannot be used for fully
automatic music composition. However, its output might be an interesting source
of inspiration for human composers. In particular, in the context of computer
assisted composition, our system could perform a very useful role by suggesting
fragments or polyphones to the composer.

The main contribution of our work, however, lies in demonstrating the feasi-
bility of using probabilistic-logical programming as an elegant tool for developing
applications in the computer music domain. As we argued in the introduction,
two aspects seem important in modelling music applications: logical rules (or, al-
ternatively, constraints) and probabilities. It is interesting to observe that these
two aspects have been considered separately by different researchers in the past
as a basis for developing music systems.

Constraints and constraint processing have been successfully applied in a num-
ber of applications (see e.g. [12,8,4] and related work at IRCAM). The approach
is natural, since music is governed by many constraints. However, there are even
more ’weak’ constraints involved in the application. These are more naturally
expressed by probabilistic rules or HMMs. Another group of researchers has fo-
cussed on probabilities and HMMs as a basis for developing music analysis and
synthesis applications (e.g. [7,6]). An important disadvantage of that approach
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is that it is not very flexible: it is hard to incorporate expert knowledge in such
models or to experiment with variants of HMMs.

Our work combines these two aspects. In this respect, it is somewhat similar
to the work of D. Cope [3], whose Experiments in Musical Intelligence system
intelligently recombines randomly chosen parts of existing work to satisfy certain
musical constraints. However, in contrast to this system, we have chosen to follow
a declarative approach, in which we describe a general model of a piece of music,
rather than develop specific algorithms to derive new music from old.

As far as we know, our work is the first application of a declarative language
based on probabilistic logic to this problem. Our experiments show that the
development of the applications in such a language is particularly elegant and
that it provides a functionality of analysis and synthesis using the same model
(and program). In developing the application, it feels as if PRISM was designed
for this purpose.

Future work. An important musical concept, ignored in our model, is the
meter, which distinguishes the stronger and more important notes from the
decorative intermediate notes. One approach to incorporate this concept in the
model is to change the representation: instead of using one flat list, a list of lists
could be used where each sublist contains one bar. The model could then be
refined, e.g. by handling the first note of every bar in a different way or by adding
a higher level HMM state which has a transition after every bar instead of after
every phase. It might also be useful to abandon the rather naive representation
of a piece of music as a list of notes and move to a more structured representation
such as, e.g., that used in [5].

As mentioned before, the results presented here should be validated with a
more thorough experimental evaluation. The main difficulty will be to collect
and prepare a large dataset.
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Abstract. Constrained path problems have to do with finding paths in graphs
subject to constraints. We present a constraint programming approach for solving
the Ordered disjoint-paths problem (ODP), i.e., the Disjoint-paths problem where
the pairs are associated with ordering constraints. In our approach, we reduce
ODP to the Ordered simple path with mandatory nodes problem (OSPMN), i.e.,
the problem of finding a simple path containing a set of mandatory nodes in
a given order. The reduction of the problem is motivated by the fact that we
have an appropriate way of dealing with OSPMN based on DomReachability,
a propagator that implements a generalized reachability constraint on a directed
graph based on the concept of graph variables.

The DomReachability constraint has three arguments: (1) a flow graph, i.e.,
a directed graph with a source node; (2) the dominance relation graph on nodes
and edges of the flow graph; and (3) the transitive closure of the flow graph.

Our experimental evaluation of DomReachability shows that it provides strong
pruning, obtaining solutions with very little search. Furthermore, we show that
DomReachability is also useful for defining a good labeling strategy. These ex-
perimental results give evidence that DomReachability is a useful primitive for
solving constrained path problems over directed graphs.

1 Introduction

Constrained path problems have to do with finding paths in graphs subject to con-
straints. One way of constraining the graph is by enforcing reachability between nodes.
For instance, it may be required that a node reaches a particular set of nodes by respect-
ing some restrictions like visiting a particular set of nodes or edges in a given order. We
find instances of this problem in Vehicle routing problems [PGPR96, CL97, FLM99]
and Bioinformatics [DDD04].

An approach to solve this problem is by using concurrent constraint programming
(CCP) [Sch00, Mül01]. In CCP, we solve the problem by interleaving two processes:
propagation and labeling. Propagation consists in filtering the domains of a set of finite
domain variables, according to the semantics of the constraints that have to be satisfied.
Labeling consists in defining the way the search tree is created, i.e., which constraint is
used for branching.

In this paper, we present a propagator called DomReachability, that implements a
generalized reachability constraint on a directed graph. The DomReachability constraint
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has three arguments: (1) a flow graph, i.e., a directed graph with a source node; (2) the
dominance relation graph on nodes and edges of the flow graph; and (3) the transi-
tive closure of the flow graph. The dominance relation graph represents a dominance
relation that identifies nodes common to all paths from a source to a destination. By
extending the dominator graph we can also identify edges common to all paths from a
source to a destination.

Due to the fact that the arguments of DomReachability are graph variables that can be
partially instantiated, the problem modelled with DomReachability can be understood
as finding a flow graph that respects the partial instantiations of the flow graph, the
dominance relation graph and the transitive closure. For instance, we may be interested
in finding a subgraph of a given graph where a node j is reached from a node s and j is
dominated by a set of nodes ns with respect to s.

Applicability. The DomReachability propagator is suitable for solving the Simple path
with mandatory nodes problem [Sel02, CB04]. This problem consists in finding a sim-
ple path in a directed graph containing a set of mandatory nodes. A simple path is a path
where each node is visited only once. Certainly, this problem can be trivially solved if
the graph has no cycle, since in that case there is only one order in which we can visit
the mandatory nodes [Sel02]. However, the presence of cycles makes the problem NP-
complete, since we can easily reduce the Hamiltonian path problem [GJ79, CLR90] to
this problem.

Note that we can not trivially reduce Simple path with mandatory nodes to Hamil-
tonian path. One could think that optional nodes (nodes that are not mandatory) can be
eliminated in favor of new edges as a preprocessing step, which finds a path between
each pair of mandatory nodes. However, the paths that are precomputed may share
nodes. This may lead to violations of the requirement that a node should be visited at
most once.

Figure 1 illustrates this situation. Mandatory nodes are drawn with solid lines. In the
second graph we have eliminated the optional nodes by connecting each pair of manda-
tory nodes depending on whether there is a path between them. We observe that the
second graph has a simple path going from node 1 to node 4 (visiting all the mandatory
nodes) while the first one does not. Therefore the simple path in the second graph is not
a valid solution to the original problem since it requires node 3 to be visited twice. Note
that the Simple path problem with only one mandatory node, which is equivalent to the
2-Disjoint paths problem [SP78], is still NP-complete.

In general, we can say that the set of optional nodes that can be used when going
from a mandatory node a to a mandatory node b depends on the path that has been
traversed before reaching a. This is because the optional nodes used in the path going
from the source to a can not be used in the path going from a to b.

From our experimental measurements, we observe that the suitability of DomReach-
ability for dealing with Simple path with mandatory nodes relies on the following as-
pects:

– The strong pruning that DomReachability performs. Due to the computation of
dominators , DomReachability is able to discover non-viable successors early on.
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Fig. 1. Relaxing Simple path with mandatory nodes by eliminating the optional nodes

– The information that DomReachability provides for implementing smart labeling
strategies. DomReachability associates each node with the set of nodes that it
reaches. This information can be used to guide the search in a smart way. The
strategy we used in our experiments tends to minimize the use of optional nodes.

An additional feature of DomReachability is its suitability for dealing with a problem
that we call the Ordered simple path with mandatory nodes problem (OSPMN) where
ordering constraints among mandatory nodes are imposed, which is a common issue
in routing problems. Taking into account that a node i reaches a node j if there is a
path going from node i to node j, one way of forcing a node i to be visited before a
node j is by imposing that i reaches j and j does not reach i. The latter is equivalent
to imposing that i is an ancestor of j in the extended dominator tree of the path. Our
experiments show that DomReachability takes the most advantage of this information
to avoid branches in the search tree with no solution.

Related work. The cycle constraint of CHIP [BC94, Bou99] cycle(N, [S1, . . . , Sn])
models the problem of finding N distinct circuits in a directed graph in such a way
that each node is visited exactly once. Certainly, Hamiltonian Path can be implemented
using this constraint. In fact, [Bou99] shows how this constraint can be used to deal
with the Euler knight problem (which is an application of Hamiltonian Path). Optional
nodes can be modelled by putting each optional node in a separate elementary cycle.
However, this constraint is not implemented in terms of dominators.

Sellmann [Sel02] suggests some algorithms for discovering mandatory nodes and
non-viable edges in directed acyclic graphs. These algorithms are extended by [CB04]
in order to address directed graphs in general with the notion of strongly connected
components and condensed graphs. Nevertheless, graphs similar to our third benchmark
[SPMc] represent tough scenarios for this approach since almost all the nodes are in the
same strongly connected component.

CP(Graph) introduces a new computation domain focussed on graphs including a
new type of variable, graph domain variables, as well as constraints over these vari-
ables and their propagators [DDD04, DDD05]. CP(Graph) also introduces node vari-
ables and edge variables, and is integrated with the finite domain and finite set com-
putation domain. Consistency techniques have been developed, graph constraints have
been built over the kernel constraints and global constraints have been proposed. One
of those global constraints is Path(p, s, d, maxlength). This constraint is satisfied if
p is a simple path from s to d of length at most maxlength. Certainly, Simple path
with mandatory nodes can be implemented in terms of Path. However, the filtering al-
gorithm of Path does not compute dominators, which makes Path also sensible to cases
like SPMN 52a.
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Dominators are commonly used in compilers for dataflow analysis [AU77]. Dom-
inance constraints also appear in natural language processing, for building semantic
trees from partial information. However, we are not aware of approaches using domi-
nators for implementing filtering algorithms. Even though the information it provides
is extremely useful, and can be computed efficiently.

Structure of the paper. The paper is organized as follows. In Section 2, we introduce
DomReachability by presenting its semantics and pruning rules. In Section 3, we show
how we can model Simple path with mandatory nodes in terms of DomReachability.
Section 4 gives experimental evidence of the performance of DomReachability for this
type of problem. In Section 5 we show a reduction of the Ordered disjoint-paths prob-
lem (ODP) to OSPMN, which can be solved by our approach.

2 The DomReachability Propagator

2.1 Extended Dominator Graph

Given a flow graph fg and its corresponding source s, a node i is a dominator of node
j if all paths from s to j in fg contain i [LT79, SGL97]:

i ∈ Dominators(fg, j) ↔ i �= j ∧ ∀p ∈ Paths(fg, s, j) : i ∈ Nodes(p) (1)

where

p ∈ Paths(fg, i, j) ↔

⎧⎨
⎩

p is a subgraph of fg
Nodes(p) = {k1, . . . , kn} ∧ k1 = i ∧ kn = j
Edges(p) = {〈kt, kt+1〉 | 1 ≤ t < n}

(2)

Note that the nodes unreachable from s are dominated by all the other nodes. However,
the nodes reachable from s always have an immediate dominator, which can be defined
as

i = ImDominator(fg, j) ↔{
i ∈ Dominators(fg, j)
¬∃k ∈ Nodes(fg) : i ∈ Dominators(fg, k) ∧ k ∈ Dominators(fg, j)

(3)
This property allows to represent the whole dominance relation as a tree, where the
parent of a node is its immediate dominator. The dominator tree can be used as an effi-
cient representation of the relation, as there exists incremental algorithms for updating
the tree [SGL97]. This paper only presents a non-incremental algorithm to compute the
whole relation (see Figure 5).

Let us now consider the extended graph of fg, Ext(fg), which is obtained by re-
placing the edges by new nodes, and connecting the new nodes accordingly. This graph
can be formally defined as follows:

〈N ′, E′, s′〉 = Ext(〈N, E, s〉) ↔

⎧⎨
⎩

s′ = s
N ′ = N ∪ E
e = 〈i, j〉 ∈ E ↔ 〈i, e〉 ∈ E′ ∧ 〈e, j〉 ∈ E′

(4)
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Fig. 2. Flow graph Fig. 3. Extended flow graph Fig. 4. Extended dominator
tree

The extended dominator graph of fg is the dominator graph of its extended graph.
Figures 2, 3 and 4 show an example of a flow graph, its extended graph, and its extended
dominator tree, respectively. The extended dominator tree has two types of nodes: nodes
corresponding to nodes in the original graph (node dominators), and nodes correspond-
ing to edges in the original graph (edge dominators). The latter nodes are drawn in
squares.

The extended dominator tree provides useful information. For instance, consider two
node dominators i and j. If 〈i, j〉 ∈ Edges(DomTree(Ext(fg))) \Edges(fg), there
are at least two node-disjoint paths from i to j in the flow graph (as it is the case between
nodes 1 and 6 in Figure 4). Note also that, if i is an ancestor of j in the extended
dominator tree, and the path from i to j does not contain any edge dominator, there are
at least two edge-disjoint paths from i to j in the flow graph.

2.2 The DomReachability Constraint

The DomReachability constraint is a constraint on three graphs:

DomReachability(fg, edg, tc) (5)

where

– fg is a flow graph, i.e., a directed graph with a source node, whose set of nodes is
a subset of N ;

– edg is the extended dominator graph of fg; and
– tc is the transitive closure of fg, i.e,

〈i, j〉 ∈ Edges(tc) ↔ 〈i, j〉 ∈ Edges(TransClos(fg))
〈i, j〉 ∈ Edges(TransClos(g)) ↔ ∃p : p ∈ Paths(g, i, j) (6)
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The above definition of DomReachability implies the following properties which are
important for the pruning that DomReachability performs. These properties define rela-
tions between the graphs fg, edg and tc. These relations can then be used for pruning,
as we show in the next section.

1. If 〈i, j〉 is an edge of fg, then i reaches j.

∀〈i, j〉 ∈ Edges(fg) : 〈i, j〉 ∈ Edges(tc) (7)

2. If i reaches j, then i reaches all the nodes that j reaches.

∀i, j, k ∈ N : 〈i, j〉 ∈ Edges(tc) ∧ 〈j, k〉 ∈ Edges(tc) → 〈i, k〉 ∈ Edges(tc)
(8)

3. If j is reachable from s = Source(fg) and i dominates j in fg, then i is reachable
from s and j is reachable from i:

∀i, j ∈ N : 〈s, j〉 ∈ Edges(tc) ∧ 〈i, j〉 ∈ Edges(edg) →
〈s, i〉 ∈ Edges(tc) ∧ 〈i, j〉 ∈ Edges(tc) (9)

2.3 Pruning Rules

We implement the constraint (5) by the propagator that we note

DomReachability(〈FG, s〉, EDG, TC). (10)

FG, EDG and TC are graph variables, i.e., variables whose domain is a set of graphs
[DDD05]. A graph variable G is represented by a pair of graphs Min(G)#Max(G).
The graph g that G approximates must be a supergraph of Min(G) and a subgraph of
Max(G), therefore Min(G) and Max(G) are called the lower and upper bounds of
G, respectively. So, i ∈ Nodes(G) holds if i ∈ Nodes(Min(G)), and i �∈ Nodes(G)
holds if i �∈ Nodes(Max(G)) (the same applies for edges). Notice that the source s of
the flow graph FG is a known value.

The definition of the DomReachability constraint and its derived properties give
place to a set of propagation rules. We show here the ones that motivate the implemen-
tation of incremental algorithms for keeping the dominance relation and the transitive
closure of the flow graph. The others are given in [QVD05b]. A propagation rule is
defined as C

A where C is a condition and A is an action. When C is true, the pruning
defined by A can be performed.

From property (7) we derive

〈i, j〉 ∈ Edges(Min(FG))
Edges(Min(TC)) := Edges(Min(TC)) ∪ {〈i, j〉} (11)

From property (8) we derive

〈i, j〉 ∈ Edges(Min(TC)) ∧ 〈j, k〉 ∈ Edges(Min(TC))
Edges(Min(TC)) := Edges(Min(TC)) ∪ {〈i, k〉} (12)
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From property (9) we derive, for i ∈ Nodes(Min(FG)),

〈s, j〉 ∈ Edges(Min(TC)) ∧ 〈i, j〉 ∈ Edges(Min(EDG))
Edges(Min(TC)) := Edges(Min(TC)) ∪ {〈s, i〉, 〈i, j〉} (13)

From definition (6) we derive

〈i, j〉 �∈ Edges(TransClos(Max(FG)))
Edges(Max(TC)) := Edges(Max(TC)) \ {〈i, j〉} (14)

From definition (1) we derive

〈i, j〉 ∈ Edges(DomGraph(Ext(Max(FG))))
Edges(Min(EDG)) := Edges(Min(EGD)) ∪ {〈i, j〉} (15)

where DomGraph is a function that returns the dominator graph of a flow graph, i.e.,
〈i, j〉 ∈ Edges(DomGraph(fg)) ↔ i ∈ Dominators(fg, j).

2.4 Implementation of DomReachability

DomReachability has been implemented using a message passing approach [VH04]
on top of the multi-paradigm programming language Oz [Moz04]. In [QVD05a], we
discuss the implementation of DomReachability in detail. In this section we simply
refer to the update of the upper bound of TC and the lower bound of EDG. Both values
should be updated when an edge is removed from Max(FG). However, as explained
in [QVD05a], we do not compute these values each time an edge is removed since this
certainly leads to a considerably amount of unnecessary computation. This is due to the
fact that these two values evolve monotonically. What we actually do is to consider all
the removals at once and make one computation per set of edges removed.

GetDominators(fg)
nodes0 := DFS(fg, Source(fg))
for i ∈ Nodes(fg) do

doms(i) := if i ∈ nodes0 then ∅ else Nodes(fg) \ {i} end
end
for i ∈ nodes0 do

nodes1 := DFS(RemoveNode(fg, i), Source(fg))
for j ∈ nodes0 \ (nodes1 ∪ {i}) do

doms(j) := doms(j) ∪ {i}
end

end
return doms

end

Fig. 5. Computation of Dominators
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Currently, our way of updating TC’s upper bound is simply by running DFS on
each node of TC’s upper bound. So the complexity of this update is O(N ∗ (N +
E)). Regarding EDG’s lower bound, the set of dominators is computed by using the
algorithm in Figure 5 (which is actually equivalent to Aho and Ullman’s algorithm
for computing dominators [AU77]). doms(i) is the set of dominators of node i in fg.
Let us assume that DFS returns the reachable nodes. doms(i) is initialized with ∅ or
Nodes(fg) \ {i} depending on whether i is reached from Source(fg) (since any node
dominates an non-reached node). The basic idea of this algorithm is that, if Source(fg)
does not reach j after removing i then i dominates j. So, each node is removed in
order to detect the nodes that it dominates. Therefore the computation of dominators is
O(N ∗ (N + E)) too.

3 Solving Simple Path with Mandatory Nodes with DomReachability

In this section we elaborate on the important role that DomReachability can play in
solving Simple path with mandatory nodes. This problem consists in finding a simple
path in a directed graph containing a set of mandatory nodes. A simple path is a path
where each node is visited once, i.e., given a directed graph g, a source node src, a
destination node dst, and a set of mandatory nodes mandnodes, we want to find a path
in g from src to dst, going through mandnodes and visiting each node only once.

The contribution of DomReachability consists in discovering nodes/edges that are
part of the path early on. This information is obtained by computing dominators in each
labeling step. Let us consider the following two cases1:

– Consider the graph variable on the left of Figure 6. Assume that node 1 reaches
node 9. This information is enough to infer that node 5 belongs to the graph, node
1 reaches node 5, and node 5 reaches node 9.

– Consider the graph variable on the left of Figure 7. Assume that node 1 reaches
node 5. This information is enough to infer that edges 〈1, 2〉, 〈2, 3〉,〈3, 4〉 and 〈4, 5〉
are in the graph, which implies that node 1 reaches nodes 1,2,3,4,5, node 2 at least
reaches nodes 2,3,4,5, node 3 at least reaches nodes 3,4,5 and node 4 at least reaches
nodes 4,5.

Note that the Hamiltonian path problem (finding a simple path between two nodes
containing all the nodes of the graph [GJ79, CLR90]) can be reduced to Simple path
with mandatory nodes by defining the set of mandatory nodes as Nodes(g)\{src, dst}.

The above definition of Simple path with mandatory nodes can be formally defined
as follows.

SPMN(g, src, dst, mandnodes, p) ↔

⎧⎨
⎩

p ∈ Paths(g, src, dst)
NoCycle(p)
mandnodes ⊂ Nodes(p)

(16)

1 In Figures 6 and 7, nodes and edges that belong to the lower bound of the graph variable
are in solid line. For instance, the graph variable on the left side of Figure 6 is a graph
variable whose lower bound is the graph 〈{1, 5}, ∅〉, and whose upper bound is the graph
〈{1, 2, 3, 4, 5, 6, 7, 8, 9},{〈1, 2〉,〈1, 3〉, 〈1, 4〉,〈2, 5〉, 〈3, 5〉, 〈4, 5〉, 〈5, 6〉, 〈5, 7〉, 〈5, 8〉, 〈6, 9〉,
〈7, 9〉, 〈8, 9〉}〉.
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Fig. 6. Discovering node dominators

Fig. 7. Discovering edge dominator

SPMN stands for “Simple path with mandatory nodes”. NoCycle(p) states that p is
a simple path, i.e., a path where no node is visited twice. This definition of Simple path
with mandatory nodes implies the following property.

DomReachability(p, edg, tc)∧ 〈Source(p), dst〉 ∈ Edges(tc) ∧
mandnodes ⊂ {i | 〈Source(p), i〉 ∈ Edges(tc)} (17)

This is because the destination is reached by the source and the path contains the manda-
tory nodes. This derived property and the fact that we can implement SPMN in terms
of the AllDiff constraint [Rég94] and the NoCycle constraint [CL97] suggest the two
approaches for Simple path with mandatory nodes summarized in Table 1 (which are
compared in the next section). In the first approach, we basically consider AllDiff and
NoCycle. In the second approach we additionally consider DomReachability.

Table 1. Two approaches for solving Simple path with mandatory nodes

Approach 1 Approach 2
SPMN(g, src, dst,mandnodes, p) SPMN(g, src, dst, mandnodes, p)

DomReachability(p, edg, tc)
〈Source(p), dst〉 ∈ Edges(tc)
mandnodes ⊂ {i | 〈Source(p), i〉 ∈ Edges(tc)}

4 Experimental Results

In this section we present a set of experiments that show that DomReachability is suit-
able for Simple path with mandatory nodes. In our experiments Approach 2 (in Table 1)
outperforms Approach 1. These experiments also show that Simple path with manda-
tory nodes tends to be harder when the number of optional nodes increases if they are
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Table 2. Simple path with mandatory nodes instances

Name Figure Source Destination Mand. Nodes Order

SPMN 22 [SPMa] 1 22 4 7 10 16 18 21 false

SPMN 22full [SPMb] 1 22 all false

SPMN 52a [SPMc] 1 52 11 13 24 39 45 false

SPMN 52b [SPMc] 1 52 4 5 7 13 16 19 22 false

24 29 33 36 39 44 45 49

SPMN 52full [SPMd] 1 52 all false

SPMN 52Order a [SPMc] 1 52 45 39 24 13 11 true

SPMN 52Order b [SPMc] 1 52 11 13 24 39 45 true

Table 3. Performance with re-
spect to optional nodes

Opt. Nodes Failures Time

5 30 89

10 42 129

15 158 514

20 210 693

25 330 1152

32 101 399

37 100 402

42 731 3518

47 598 3046

Table 4. Simple path with mandatory nodes tests

Problem SPMN SPMN+R SPMN+R+ND SPMN+R+ND+ED

Instance Figure Failures Time Failures Time Failures Time Failures Time

SPMN 22 [SPMa] +130000 +1800 91 6.81 40 6.55 13 4.45

SPMN 22full [SPMb] 213 1.44 19 0.95 0 0.42 0 1.22

SPMN 52b +900 +1800 +700 +1800 100 402

SPMN 52full [SPMd] 3012 143 774 765 3 8.51 3 45.03

SPMN 52Order a [SPMc] +12000 +1800 51 46.33 45 81 16 57.07

SPMN 52Order b +12000 +1800 +1500 +1800 81 157 41 117

uniformly distributed in the graph. We have also observed that the labeling strategy that
we implemented with DomReachability tends to minimize the use of optional nodes
(which is a common need when the resources are limited).

In Table 2, we define the instances on which we made the tests of Table 42. The node id
of the destination is also the size of the graph. The column Order is true for the instances
whose mandatory nodes are visited in the order given. Notice that SPMN 52Order b has
no solution. The time measurements are given in seconds. The number of failures means
the number of failed alternatives tried before getting the solution.

We have made four types of tests in our experiments: using SPMN without Dom-
Reachability (column “SPMN”), using SPMN and DomReachability but without con-
sidering the dominance graph (column “SPMN+R”), using SPMN and DomReachabil-
ity with the dominance graph (column “SPMN+R+ND”), and using SPMN and Dom-
Reachability with the dominance graph of the extended flow graph (node+edge domi-
nators (column “SPMN+R+ND+ED”)).

As it can be observed in Table 4, we were not able to get a solution for SPMN 22 in
less than 30 minutes without using DomReachability. However, even though the num-
ber of failures is still inferior, the use of DomReachability does not save too much time
when dealing with mandatory nodes only. This is due to the fact that we are basing our

2 In order to save space, the figures mentioned in the tables were dropped and made available
through references [SPMa], [SPMb], [SPMc] and [SPMd].
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implementation of SPMN on two things: the AllDiff constraint [Rég94] (that lets us effi-
ciently remove branches when there is no possibility of associating different successors
to the nodes) and the NoCycle constraint [CL97] (that avoids re-visiting nodes).

The reason why SPMN does not perform well with optional nodes is because we are
no longer able to impose the global AllDiff constraint on the successors of the nodes
since we do not know a priori which nodes are going to be used. In fact, one thing that
we observed is that the problem tends to be harder to solve when the number of optional
nodes increases. In Table 3, all the tests were performed using DomReachability on the
graph of 52 nodes.

Even though, in SPMN 22, the benefit caused by the computation of edge domina-
tors is not that significant, we were not able to obtain a solution for SPMN 52b in less
than 30 minutes, while we obtained a solution in 402 seconds by computing edge dom-
inators. So, the computation of edge dominators pays off in most of the cases, but node
dominators should be computed in order to profit from edge dominators.

4.1 Labeling Strategy

DomReachability provides interesting information for implementing smart labeling
strategies, due to the fact that it associates each node with the set of nodes that it reaches.
This information can be used to guide the search in a smart way. For instance, we ob-
served that, when choosing first the node i that reaches the most nodes and selecting
as a successor of i first a node that i reaches, we obtain paths that minimize the use of
optional nodes (as it can be observed in [SPMc]).

Nevertheless, in order to reduce the number of failures in finding the solution of
[DPc] (which was solved in less than 100 failures), we favored the nodes that were
closer to the mandatory nodes, i.e., if the successors of the chosen node are not manda-
tory the chosen successor is the one closest to the next mandatory node.

4.2 Imposing Order on Nodes

An additional feature of DomReachability is its suitability for imposing ordering con-
straints on nodes (which is a common issue in routing problems). In fact, it might be

Fig. 8. Finding two disjoint paths Fig. 9. Finding a simple path passing through n
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the case that we have to visit the nodes of the graph in a particular (partial) order. We
call this version the “Ordered simple path with mandatory nodes problem” (OSPMN).

Our way of forcing a node i to be visited before a node j is by imposing that i
reaches j and j does not reach i. The tests on the instances SPMN 52Order a and
SPMN 52Order b show that DomReachability takes the most advantage of this infor-
mation to avoid branches in the search tree with no solution. Notice that we are able
to solve SPMN 52Order a (which is an extension of SPMN 52a) in 57.07 seconds. We
are also able to detect the inconsistency of SPMN 52Order b in 117 seconds.

5 Reducing the Ordered Disjoint-Paths Problem to the Simple
Path with Mandatory Nodes Problem

The k-Disjoint-paths problem consist in finding k pairwise disjoint paths between k
pairs of nodes 〈s1, d1〉, 〈s2, d2〉, . . . , 〈sk, dk〉. Both the node-disjoint version and the
edge-disjoint version are NP-complete [SP78]. We will focus on the node-disjoint
version.

Let us first look at the problem of reducing the 2-Disjoint-paths problem to SPMN.
Suppose that we want to find two disjoint paths between the pairs 〈s1, d1〉 and 〈s2, d2〉
in g. Let g′ and n be defined as follows.

n �∈ Nodes(g)
g′ = AddEdges(g1, E1 ∪ E2)
g1 = AddNode(g2, n)
g2 = RemoveNodes(g, {d1, s2})
E1 = IncEdges(g, d1)[d1/n]
E2 = OutEdges(g, s2)[s2/n]

(18)

Finding the two disjoint paths is equivalent to finding a simple path from s1 to d2

passing through n in g′. The correctness of this reduction relies on the fact that the
concatenation of the two disjoint paths forms a simple path since each disjoint path
is a simple path. Figure 9 shows the the reduction of the two disjoint paths problem
of Figure 8. The path found in Figure 9 corresponds to the concatenation of the two
disjoint paths of Figure 8.

Let us consider now an extended version of the 2 Node-disjoint path problem that we
call 2 Ordered node-disjoint path (2ODP). In this version, each pair is associated with
a set of mandatory nodes and an order relation on the mandatory nodes. That is, given
the directed graph g and the tuples 〈s1, d1, mn1, order1〉 and 〈s2, d2, mn2, order2〉,
the goal is to find two paths p1 and p2 such that p1 is a path from s1 to d1 visiting mn1

respecting order1, p2 is a path from s2 to d2 visiting mn2 respecting order2, and p1

and p2 are node-disjoint.
The 2ODP problem 〈g, 〈〈s1, d1, mn1, order1〉, 〈s2, d2, mn2, order2〉〉〉 can be re-

duced to OSPMN 〈g′, s1, d2, mn′, order′〉 where g′ is defined as in the previous reduc-
tion, mn′ = mn1 ∪mn2 ∪ {n}, n is defined as before, and

order′ =

⎧⎨
⎩

order1 ∪
order2 ∪
{〈n1, n2〉 | (n1 ∈ mn1 ∧ n2 = n) ∨ (n1 = n ∧ n2 ∈ mn2)}.

(19)
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ReduceODP(〈g, 〈〈s1, d1, mn1, order1〉, . . . , 〈sk, dk, mnk, orderk〉〉〉)
ospmn := 〈g, s1, d1, mn1, order1〉
for i ∈ {2, 3, . . . , k} do

〈g′, s′, d′, mn′, order′〉 := ospmn
ospmn := Reduce 2 ODP (〈g′, 〈〈s′, d′, mn′, order′〉, 〈si, di, mni, orderi〉〉〉)

end
return ospmn

end

Fig. 10. Reducing ODP to OSPMN

The simple path traverses the nodes mn1 in the order order1, and the nodes mn2 in the
order order2, the nodes mn1 are visited before n and the nodes in mn2 after n.

Let Reduce 2 ODP be defined as

Reduce 2 ODP (ODPins) = OSPMNins
ODPins = 〈g, 〈〈s1, d1, mn1, order1〉, 〈s2, d2, mn2, order2〉〉〉

OSPMNins = 〈g′, s1, d2, mn′, order′〉
(20)

The function ReduceODP , which reduces any ordered disjoint path problem (ODP)
to OSPMN, can be defined as shown in Figure 10. Certainly, we assume that the pairs
〈s1, d1〉, 〈s2, d2〉, . . . , 〈sk, dk〉 are pairwise node-disjoint. However, this condition can
be easily fulfilled by duplicating the nodes that are used by more than one pair.

Note that the conventional k node-disjoint paths problem can be trivially reduced to
ODP. We simply need to map each pair 〈si, di〉 to 〈si, di, ∅, ∅〉. We used ReduceODP
to solve the case shown in [DPc]. In this case we were interested in finding 14 node-
disjoint paths in a directed graph of 165 nodes.

6 Conclusion and Future Work

We presented DomReachability, a constrained graph propagator that can be used for
solving constrained path problems. DomReachability is a propagator that reasons in
terms of the three partially defined graphs that it has as arguments. Further definition of
one of its graphs may cause the other two graphs to be further defined. After introducing
the semantics and pruning rules of DomReachability, we showed how its use can speed
up a standard approach for dealing with Simple path problem with mandatory nodes.
Our experiments show that the gain is increased with the presence of optional nodes.
The latter makes the problem harder, and standard approaches perform worse.

It is important to emphasize that both the computation of node dominators, and the
computation of edge dominators play an essential role in the performance of Dom-
Reachability. The reason is that each one is able to prune when the other can not. No-
tice that Figure 6 is a context where the computation of edge dominators cannot infer
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anything since there is no edge dominator. Similarly, Figure 7 represents a context
where the computation of edge dominators discovers more information than the com-
putation of node dominators.

As mentioned before, our current approach for maintaining the dominator graph
and the transitive closure has complexity O(N ∗ (N + E)). However, we are aware
of O(N + E) algorithms for updating these structures [SGL97, DI00]. In fact, there
is a non-incremental algorithm for computing dominator trees that is more efficient
than our current algorithm since it is O(Eα(E, N)), where α(E, N) is a functional
inverse of Ackermann’s function [LT79]. Certainly, our next step is to implement these
algorithms since we believe that they will remarkably improve the performance of
DomReachability.
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[DDD05] G. Dooms, Y. Deville, and P. Dupont. CP(Graph):introducing a graph computation
domain in constraint programming. In CP2005 Proceedings, 2005.

[DI00] Camil Demetrescu and Giuseppe F. Italiano. Fully dynamic transitive closure:
Breaking through the O(n2) barrier. In IEEE Symposium on Foundations of Com-
puter Science, pages 381–389, 2000.

[DPc] A disjoint-paths problem solved with Reachability.
Available at http://www.info.ucl.ac.be/˜luque/PADL06/DPcase.ps.

[FLM99] F. Focacci, A. Lodi, and M. Milano. Solving tsp with time windows with constraints.
In CLP’99 International Conference on Logic Programming Proceedings, 1999.

[GJ79] Michael Garey and David Johnson. Computers and Intractability: A Guide to the
The Theory of NP-Completeness. W. H. Freeman and Company, 1979.



Using Dominators for Solving Constrained Path Problems 87

[LT79] T. Lengauer and R. Tarjan. A fast algorithm for finding dominators in a flowgraph.
ACM Transactions on Programming Languages and Systems, 1(1):121–141, July
1979.

[Moz04] Mozart Consortium. The Mozart Programming System, version 1.3.0, 2004. Avail-
able at http://www.mozart-oz.org/.

[Mül01] Tobias Müller. Constraint Propagation in Mozart. Doctoral dissertation, Univer-
sität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung In-
formatik, Saarbrücken, Germany, 2001.

[PGPR96] G. Pesant, M. Gendreau, J. Potvin, and J. Rousseau. An exact constraint logic pro-
gramming algorithm for the travelling salesman with time windows, 1996.

[QVD05a] Luis Quesada, Peter Van Roy, and Yves Deville. Reachability: a constrained path
propagator implemented as a multi-agent system. In CLEI2005 Proceedings, 2005.

[QVD05b] Luis Quesada, Peter Van Roy, and Yves Deville. The reachability propagator. Re-
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Abstract. Modern IDEs have an open-ended plugin architecture to al-
low customizability. However, developing a plugin is costly in terms of ef-
fort and expertise required by the customizer. We present a two-pronged
approach that allows for open-ended customizations while keeping the
customization cost low. First, we explicitly limit the portion of the de-
sign space targeted by the configuration mechanism. This reduces cus-
tomization cost by simplifying the configuration interface. Second, we
use a declarative programming language as our configuration language.
This facilitates open-ended specification of behavior without burdening
the user with operational details.

Keywords: integrated development environment, program database,
domain-specific language, logic programming.

1 Introduction

Customizability and extensibility are important design goals for modern IDEs. In
a typical IDE we discern two levels of customizability. The first level is provided
by GUI controls such as preference panes. These customizations are cheap1. Un-
fortunately their range is limited: one can chose between a finite set of predefined
behaviors but one cannot define new behavior.

The second level of customizability is through a plugin architecture. For exam-
ple, the Eclipse IDE plugin architecture allows one to implement IDE extensions
in JavaTM and dynamically link them with the IDE. Other modern IDEs offer
similar mechanisms. Plugins add executable code to the IDE so new behavior can
be defined. Unfortunately the cost of customization is comparable to developing
a small GUI application.

We will refer to a customization mechanism’s trade-offs, between open-
endedness and customization cost, as its customization-cost profile. We argue
that IDEs provide two extreme customization-cost profiles: one is open-ended
and expensive, the other is cheap but limited. We claim that it is also possi-
ble and useful to design configuration mechanisms with cost profiles in between
these two extremes.
1 We are interested in the cost in terms effort and expertise required of a customizer.

In this paper, words like “cost”, “cheap” and “expensive” should be interpreted in
this sense.
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Fig. 1. Different Eclipse JDT Code Browsers

We present an approach that is flexible enough for open-ended customiza-
tions while remaining relatively cheap. There are two key ingredients. First,
we explicitly limit ourselves to a portion of the design space referred to as the
targeted design space. This reduces customization costs by allowing a simpler
configuration interface. Second, we use a declarative programming language to
facilitate open-ended specification of behavior without burdening the user with
operational details.

We do not intend to provide direct evidence for our claims in their most
general sense. Instead, we describe a concrete illustrative example, the JQuery
tool, for one particular class of IDE extensions, code browsers. Applying these
ideas to other types of IDE extensions is interesting for future research but is
outside the scope of this paper.

2 The Targeted Design Space

In this section we examine the browsers provided by Eclipse JDT (Java De-
velopment Tools) environment, which is representative for the state of the art.
This analysis serves two purposes. First, it serves as a basis to establish explicit
bounds on the targeted design space. Second, it provides a concrete example of
the two extreme customization-cost profiles.

Eclipse JDT offers multiple browsers to view and navigate source code. The
core JDT browsers are shown in Figure 1. Each browser allows a developer to
view and navigate their code in a different way: the Package Explorer (left) shows
program structure in terms of modular containment relationships; the Type Hi-
erarchy (middle) shows code structure in terms of inheritance relationships; and
the Call Hierarchy (right) shows the structure of the static call graph.

Each of the browsers provides very similar functionality: a pane with a tree-
viewer displaying icons and textual labels that represent program elements (pack-
ages, types etc.). The elements are organized hierarchically based on a particular
relationship that exists between the elements. Double clicking an element reveals
its source-code in a Java editor. Each view also has some buttons at the top,
allowing some control over the contents and structure of the view. For example,
the call hierarchy allows inverting the direction of the call edges; the package



90 K. De Volder

explorer allows hiding private and static elements; the type hierarchy allows
showing/hiding an extra pane displaying the members of the selected type.

We see that Eclipse JDT browser configuration exhibits the two extreme
customization-cost profiles: GUI buttons provide cheap but limited control over
a browser’s behavior but customization beyond this point is costly: in the best
case the browser’s source code can be used to develop a new plugin.

We end this section by establishing explicit bounds on JQuery’s targeted
design space. We decided to focus only on the core functionality observed in
the various JDT browsers: a single browser pane containing a tree widget, but
no support for additional control buttons or information panes. We also limited
ourselves to browsers for a single Java program. In particular, it was not our
goal to support browsing across multiple versions (e.g. CVS) or browsing of non-
Java artifacts (e.g XML configuration files, build scripts etc.). These limitations
delineate the targeted design space.

As a general principle, a customizer should not need to specify things that
do not vary within the targeted design space. This principle served as a design
guideline to simplify the configuration interface.

3 JQuery from a User’s Perspective

JQuery is Java browser implemented as an Eclipse plugin. Unlike the standard
Eclipse browsers, JQuery is generic: it can be configured to render many differ-
ent types of views. We will argue that JQuery’s customization-cost profile fits
somewhere in between the two extremes offered by modern IDEs. This means
that JQuery offers a more cost-effective creation of open-ended browser varia-
tions than a plugin architecture. However, it also means that customizing JQuery
requires more expertise than clicking GUI buttons. Users may be reluctant to
learn the configuration interface. Therefore in this section we present an example
illustrating how JQuery 3.1.5 can already be used “out of the box”.

The example is a fictional scenario in which a developer is exploring the
JHotDraw [1] code base. JHotDraw is an application that lets users draw and
manipulate a variety of figures such as rectangles, circles, etc. The developer
wants to find out how figures are implemented and to find an example of a class
that manipulates figures. Figure 2 shows a screenshot of JQuery at the end of
her exploration. We explain the exploration step by step.

The starting point for exploration is typically a general purpose browser, such
as a package explorer or a type hierarchy. To this end, JQuery provides a menu
to select one of several “TopLevel” browsers. In this example the developer
chooses to start with a JQuery view similar to an Eclipse package explorer. She
then navigates down into the org.jhotdraw.figures package and discovers a
number of classes that seem to correspond to different types of figures. Assuming
there is a common base type for figures she decides to examine the supertypes
of ElbowHandle. In JQuery, the browser’s view can be extended to reveal rela-
tionships not yet shown. Right-clicking on a node brings up a contextual menu of
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Fig. 2. Exploring Figures Implementation in JHotDraw

node-specific queries. The developer right-clicks on ElbowHandle and selects “In-
heritance >> Inverted Hierarchy”, which reveals the supertypes of ElbowHandle
in an up-side-down inheritance hierarchy. Double clicking on a node brings the
corresponding source code into view in the editor pane. Our developer inspects
the source code of the supertypes of ElbowHandle and concludes that they are
not what she is looking for. She then retraces her steps and tries browsing the
supertypes of EllipseFigure instead. Among these she finds an interface called
Figure which is what she was looking for. She decides to investigate what oper-
ations can be performed on Figures, expanding the view with the list of methods
it defines. Finally, to find examples of classes that use Figures she decides to
find all the places in the code that make calls to addFigureChangeListener().
This concludes the example.

This example adopted from our previous paper [11] shows how an exploration
task may involve following several different types of relationships back and forth.
It illustrates that JQuery supports this kind of “mixed-relationship browsing”
by allowing the insertion of sub-browsers at any node in the tree. Our previous
paper focused on the merits of this particular GUI design. The current paper
focuses on the merits of its generic implementation and declarative configuration
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interface. We believe that it is one of the merits of the generic implementation to
have enabled the conception of the “mixed-relation browser” GUI. Indeed, the
predecessor of JQuery, QJBrowser [13], was also generic but it did not support
mixed-relationship browsing. QJBrowser’s generic browser model made adding
that ability a straightforward next step.

4 Levels of Configurability

Although JQuery rests on top of a general purpose logic programming language
called TyRuBa [8], it is not required for a JQuery user to be an expert TyRuBa
programmer. It was illustrated in Section 3 how using JQuery “out of the box”
requires no knowledge of logic programming. Furthermore, JQuery’s configura-
tion interface can be divided into two levels which we will refer to as the basic
and the advanced configuration level. We draw the line between the levels based
on how a user interacts with the configuration mechanism. A basic user only uses
the JQuery GUI. An advanced user also edits configuration files in a separate
text editor. Since configuration files are TyRuBa include files, advanced user’s
need to be familiar with programming in TyRuBa. Basic users are only exposed
to TyRuBa via a dialog box in which they can edit a query. It suffices they have
a basic understanding of TyRuBa expression syntax, but they do not need to
know about inference rules or writing logic programs.

In the next two sections we will discuss both configuration levels in more
detail. Each section begins with an explanation of the configuration interface and
concludes with an argument placing its customization-cost profile at a different
point between the two extremes.

5 Basic Configuration: “Instant” Browser Definitions

5.1 The Basic Configuration Interface

The key insight that sparked the JQuery design is that a code browser can
be thought of as not much more than a tree-viewer widget for displaying and
navigating query results. This is the main principle underlying JQuery browser
definitions, consisting of two parts. The first part is a logic query executed over
the source model, a database containing facts about the browsed program’s struc-
ture. The purpose of the query is to select the elements to be displayed in the
browser. We will refer to it as the selection criterion. The second part is an
ordered list of (a subset of) the variables bound by the query. Its purpose is to
define how to organize the query results into a tree. We will refer to it as the
organization criterion.

A basic user can access and change the definition of any browser or sub-
browser by double-clicking on its root node. Alternatively they can create a new
browser by selecting “New TopLevel Query” from the menu. In each case they
are presented with a dialog box like the one shown in Figure 3.
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Fig. 3. Dialog box for editing browser definitions

We now look at some concrete examples that serve two purposes. First, they
help clarify the meaning of selection and organization criteria. Second, they
illustrate we can a create a broad variety of useful browsers.

The first example is shown in Figure 3. Its selection criterion finds all types
(classes or interfaces) in the program whose name ends with “Figure”. This is a
useful query, exploiting a naming convention in JHotDraw to find classes that
implement the Figure interface.

The query language used to express the selection criterion is the declarative
logic programming language TyRuBa [8]. TyRuBa expression syntax is similar
to Prolog’s. One notable difference is that identifiers for denoting variables must
start with a “?” character. This is convenient because it allows us to use names
of Java methods, classes and variables as constants even when they start with a
capital.

JQuery defines a number of TyRuBa predicates that provide access to the
source model. In this example two such predicates are used: the type predicate
is used to find all types declared in the program; the re name predicate is used to
restrict to types whose name matches the regular expression /Figure$/. These
predicates are implemented by JQuery either by storing facts into the TyRuBa
database or by means of logic inference rules. From a user’s perspective this
distinction is irrelevant. All that is required is that users are familiar with the
semantics of the available predicates. The list of source model predicates is fairly
extensive. A representative selection is shown in Table 1. For a more complete
list we refer to the JQuery documentation [14]. These predicates provide access
to a wealth of information about Java program structure: declaration context,
inheritance hierarchy, location and targets of method calls, field accesses, where
objects are created, location of compilation errors, method signatures, JavaDoc
tags, etc.

The previous example’s selection criterion only binds a single variable, making
it ill-suited to illustrate the organization criterion. So let’s extend the selection
criterion as follows:

type(?T),re_name(?T,/Figure$/),method(?T,?M),returns(?M,?R)
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Table 1. Selected predicates from JQuery’s source model

Predicate Description

package(?P) ?P is a package.
type(?T) ?T is a type defined in the program.
interface(?T) ?T is an interface defined in the program.
method(?M) ?M is a method defined in the program.
field(?F) ?F is a field defined in the program.
method(?T,?M) ?M is a method defined in type ?T.
returns(?M,?T) Method ?M has return type ?T.
name(?E,?n) Element (=package, type, method, field) ?E has name ?n.
re name(?E,?regexp) Element ?E has a name that matches ?regexp.
subtype(?Sub,?Sup) ?Sub is a direct supertype of ?Sup.
subtype+(?Sub,?Sup) Transitive closure of subtype.
child(?E1,?E2) ?E2’s declaration is directly nested inside ?E1.
reads(?reader,?field,?loc) ?field is read from ?reader at source location ?loc.

Fig. 4. Example: two different ways of organizing methods

This query additionally selects the methods (for each selected type) and the
methods’ respective return types. The results of this query can be organized
in several ways. For example we can organize them primarily based on what
type they are declared in by specifying a selection criterion ?T, ?R, ?M. Al-
ternatively we can organize them primarily based on return type by specifying
?R, ?T, ?M. The resulting browsers are shown side by side in figure 4. To show
the correspondence between both browsers, we have selected the same method
(getFontWidth() from class TextAreaFigure returning a float) in each.

For our next example, we note that not all JHotDraw’s figure classes follow
the naming convention our first example relies on. This fact can be verified by
formulating a selection criterion that finds violations of the naming convention:

name(?IFigure,Figure), subtype+(?IFigure,?Figure),
NOT( re_name(?Figure,/Figure$/) )
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The resulting JQuery browser, displaying the values of all violating ?Figures,
could be very useful to refactor the offending classes and make them respect the
naming convention. Note that it would be very difficult to accomplish this task
with the standard Eclipse browsers and searching tools: even though Eclipse has a
fairly extensive search facility, it is insufficient to formulate a precise enough query.

As a last example, assume that the developer who wishes to fix her code
to adhere to the naming convention only has ownership of specific packages in
the code base. The browser above is not as useful because it does not help
her distinguish violating classes under her control from other classes. There are
several ways in which she could get around this. If she knows how to characterize
the packages under her control, for example based on a naming convention, then
she could refine the query to remove classes not under her control. Alternatively,
she could decide to organize the offending classes based on their package by
changing the browser definition as follows:

selection: name(?IFigure,Figure), subtype+(?IFigure,?Figure),
NOT( re_name(?Figure,/Figure$/) ),
package(?Figure,?P)

organization: ?P, ?Figure

The resulting browser lets the developer quickly see all packages that contain
offending classes and navigate to those packages under her control.

These are only a few examples. Many other useful browser’s can be defined
by selecting and organizing Java code elements based on different combinations
of properties and relationships such as their names, inheritance relations, field
accesses, declaration context, method call targets, object creation, method sig-
natures, JavaDoc tags, etc. The possibilities are endless.

We conclude this section by noting that sub-browser definitions, for which
we gave no explicit example, work in exactly the same way except that their
selection criterion may use a special ?this variable to refer to the element at
which the sub-browser is rooted.

5.2 The TyRuBa Language

We now discuss some specifics of the TyRuBa language. TyRuBa has a static
type-and-mode system that was heavily inspired by Mercury’s [10]. The TyRuBa
inference engine follows a tabled evaluation [2] strategy. Both these features help
making the query language more declarative than more conventional (i.e. Prolog-
like) logic programming languages. The details of the TyRuBa language, its type
and mode system and its tabled execution are beyond the scope of this paper.
We refer the interested reader to [8] for more details. We will assume that the
typical PADL reader has at least a passing familiarity with these more advanced
logic programming language features and limit our discussion to how they may
affect JQuery users and their required level of expertise.

Evidently, the type-and-mode system adds considerable complexity for users
who need to understand it and provide additional type and mode declarations
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when defining predicates. However, these complications mostly affect advanced-
level users, since basic users are not expected to declare or implement predicates.
Most important for the basic user is how these features affect the formulation of
logic expressions. The type and mode system actually helps rather than compli-
cates this. First, the type-and-mode checker rejects some ill-formed queries with
an error message. In a more Prolog-like language such queries might execute
without returning any results, producing an empty browser. For example the
following query which has its arguments ?loc and ?f accidentally switched will
be rejected by the type checker:

field(?f),name(?f,"foobar"),reads(?m,?loc,?f)

Another advantage is that the mode system absolves the user from worrying
about subexpression execution order. For example in the following query subex-
pressions can be executed in either order and this will yield the same result (the
Figure interface in the JHotDraw code base):

type(?Figure), name(?Figure,Figure)

However, it is preferable to execute the name subexpression first because that
will quickly retrieve all objects with name Figure (a small number) and then
iteratively single out the ones that represent types. The other execution order
will retrieve all types (a large number) and then iteratively test whether their
name equals Figure. The TyRuBa mode system uses some simple heuristics
based on the number of bound parameters and a predicate’s declared modes to
make an educated guess about the best execution order.

The second example is similar but more complex and illustrates that some
execution orders are expressly prohibited by the mode system.

re_name(?drawMethod,/^draw/), interface(?IFigure),
name(?IFigure,Figure), subtype+(?IFigure,?Figure),
method(?Figure,?drawMethod)

In this query, the execution of the re name subexpression must be postponed
at least until the ?drawMethod variable is bound to an actual value. The TyRuBa
mode system will pick an ordering that satisfies this constraint, as well as the
preference to execute the name subexpression first.

Our experience suggests it is more intuitive for users unfamiliar with a logic
programming language to write conjuncts in any order and think of them as
semantically equivalent, than to consider the operational semantics of different
execution orders.

5.3 Configuration-Cost Profile

We end this section with an analysis of the configuration-cost profile for the
basic-level user. Recall that the customization-cost profile of a mechanism is a
characterization of its cost versus flexibility trade-off. We therefore perform an
analysis in terms of a) limitations of the mechanism b) cost of the mechanism. We
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will argue that both in terms of cost and limitations the basic-level configuration
interface fits somewhere in the middle of the spectrum.

We can divide the user’s cost into two kinds of effort: effort to learn the query
language and effort to actually formulate a query. Both of these costs are clearly
higher than respective costs to click on GUI buttons which requires little effort
to learn or to use.

Both of these costs are at the same time considerably lower than similar costs
associated with developing a plugin in Java. Specifically, learning touse a plugin ar-
chitecture is very costly because the APIs and XML configuration files associated
with a plugin architecture have a complexity that is orders of magnitude higher
than that of the JQuery query language. As a point of comparison, we determined
the minimal subset of Eclipse 3.1 public APIs that is required for the compilation
of JQuery. This subset declares 241 public types and 2837 public methods. In con-
trast, the JQuery query language defines only 13 types and 53predicates over those
types. We believe the difference outweighs the advantage that plugin developers
may gain frombeing able to program in the familiar Java language.A similar order-
of-magnitude difference is apparent in the effort of formulating a query versus im-
plementing a plugin. A typical query is a handful of lines of declarative code; the
implementation of a plugin ranges in the thousands of lines. For example the im-
plementation of JQuery itself consists of 11019 commented lines of Java code, not
including the implementation of the query engine.

Of course, the reduction in complexity implies a loss of flexibility. The basic-
level configuration interface does not provide full control over all aspects of a
browser’s behavior, or not even over some configurable aspects of the tool that
are only accessible at the advanced level.

Some limitations that apply specifically to basic-level users are as follows.
First, edits to a browser definition through the GUI only affect the current
instance of the browser but not new instances created later. Second, the structure
of JQuery’s menus can not be changed by basic users because this requires editing
the configuration files. Third, basic users cannot define browsers with recursive
structure such as for example a type-hierarchy or call-hierarchy browser.

There are also limitations that are a result of the limits of the source model.
Basically, if information about the program structure is not present in the source-
model or derivable from it, than no amount of creativity can produce that in-
formation. These limitations affect basic and advanced users alike. A plugin
implementor on the other hand has direct access to extensive APIs and if that is
not sufficient they have the option of implementing their own program analyzer.

In conclusion, the above analysis puts JQuery’s basic-level configuration cost
profile clearly in the middle between GUI controls and plugins.

6 Advanced Configuration

In this section we discuss the level of configurability available to advanced
users willing to learn the TyRuBa programming language and the structure
of JQuery’s configuration files. Compared to basic users advanced users gain
additional abilities:



98 K. De Volder

1. to effect permanent changes to an existing browser’s definition.
2. to define new browsers and add them permanently to JQuery’s menu hier-

archy.
3. to define recursive browsers.
4. to extend the query language with new predicates.

6.1 The Advanced Configuration Interface

The principle behind the advanced configuration interface is that whenever
JQuery needs to make a decision about what to display or do, and this is sup-
posed to be configurable, JQuery launches a query, asking the TyRuBa engine
what it should do. Thus, the configuration interface takes the form of a set of
predicates that are declared by JQuery but implemented in configuration files.
The configuration files are TyRuBa include files that get loaded dynamically
by JQuery. These files provide logic facts and rules that determine a significant
portion of JQuery’s functionality. To save space we limit ourselves to discussing
two illustrative examples.

The first example is the definition of the “Inverted Hierarchy” sub-browser
shown in Figure 2 and its corresponding menu item in JQuery’s GUI. The rele-
vant predicate in the configuration interface is declared as follows:

// --------------------------------------------------------------------

// A menuItem is defined follows:

//

// menuItem(?this, label, queryStr, [varName0, varsName1, ...])

// :- applicabilityExp.

// --------------------------------------------------------------------

menuItem :: Object, [String], String, [String]

MODES

(BOUND,FREE,FREE,FREE) IS NONDET

END

We stress that the declaration of this predicate is not in the configuration
files, but rather is provided by JQuery as part of its definition of the configu-
ration interface. The role of the declaration is to establish a contract between
the JQuery GUI which calls it, and the configuration files that provide the im-
plementation. The “Inverted Hierarchy” menu item is defined by the following
configuration rule:

menuItem(?this, ["Inheritance", "Inverted Hierarchy"],

"inv_hierarchy(?this,?IH)", ["?IH"])

:- Type(?this).

When a user clicks on an element in the GUI, JQuery calls the menuItem pred-
icate, binding the ?this parameter to the element. The second parameter will be
bound by the rule to a list of strings representing a path in the menu/sub-menu
hierarchy. In this case it indicates the creation of a menu item “Inverted Hierar-
chy” in the “Inheritance” menu. This rule’s condition appropriately restricts its
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applicability to elements of type Type. The second and third parameters, also
bound by the rule, correspond to the selection and organization criterion for the
sub-browser created by invoking this menu. Their meaning is as described in
Section 5. However, for simplicity, we neglected to mention that when variables
are bound to list values, they are “unfolded” to construct consecutive levels of
the tree. This mechanism enables the definition of recursive browsers. In this
example, the inv hierarchy auxiliary predicate, recursively constructs paths in
the inverted-hierarchy tree:

inv_hierarchy :: Type,[Type]

MODES (B,F) IS NONDET END

inv_hierarchy(?T, []) :- NOT(subtype(?,?T)).

inv_hierarchy(?Sub,[?Super|?R])

:- subtype(?Super,?Sub), inv_hierarchy(?Super,?R).

Note: the ? variable in TyRuBa is similar to Prolog’s variable.
As a second example, we show how this mechanism makes it possible to

dynamically construct menu structures dependent on properties of the element
clicked on:

menuItem(?this, ["Members","Methods...", ?name],

{child(??this,??M), method(??M),name(??M,?name)}, ["?M"], )

:- Type(?this), method(?this, ?M), name(?M, ?name).

The text within {} is a string template where variables inside the braces are
substituted by their values. Variable substitution can be prevented by escaping
them with an extra ?). Interesting in this example is how the variable ?name
bound by the rule’s condition is used to construct the menu label as well as the
selection criterion.

6.2 Customization-Cost Profile

It should be clear by now that the advanced configuration level represents yet
another point in the configuration-cost profile spectrum which is situated some-
where in between that of the basic-level and the plugin architecture.

In comparison to the basic-level, this mechanism offers strictly more flexibility
than the basic level and at a strictly higher cost.

In comparison to plugins and in terms of flexibility, in spite offering a lot of
flexibility to specify new behavior in logic rules and queries, JQuery is bound
by the limitations of the targeted design space outlined in Section 2. Other lim-
itations such as those caused by what is (not) reified by the source model also
still apply. In terms of cost, an advanced user must be fluent in the TyRuBa
programming language. This requires considerable effort in learning a non fa-
miliar and unconventional programming language. Assuming that the language
barrier can be overcome, the customization cost is an order of magnitude be-
low that of implementing a plugin. As a point of comparison, the most complex
browser definition in JQuery’s configuration files defines the “Method Hierarchy”
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sub-browser showing how a given method is overridden repeatedly in different
classes in its class hierarchy. It defines two auxiliary predicates (to construct a
hierarchy of alternating methods and classes in two steps) and consists of a total
of 24 lines of TyRuBa code. As another point of comparison, the two default
configuration files “topQuery.rub” and “menu.rub” which define a total of 15
TopLevel browsers and 54 sub-browsers are 73 and 352 lines of TyRuBa code
respectively (this includes blank lines and comments). Even when taken together
there is still an order of magnitude difference from the typically thousands of
lines of Java code required to implement a browser plugin.

7 Related Work

JQuery derives much of its flexibility and functionality from the expressive power
of the underlying query engine. The idea of using structural queries — in a
logic language or another sufficiently powerful query language — as a basis for
constructing software development tools is not new. Some examples of other
systems based on structural source code querying are SOUL [17], ASTLog [7],
GraphLog [6], Coven [4] and Stellation [5]. SOUL is a logic query language
integrated with the Smalltalk development environment. ASTLog is a logic query
language for querying C++ abstract syntax trees. GraphLog is a logic based
graphical query language in which both queries and query results are represented
as Graphs. Coven and Stellation are software configuration management tools,
equipped with an SQL-like query language for the retrieval of software units.
In all these tools, software queries can be used by developers in the process of
exploring code. However, they do not support the use of the query language in
that same way that JQuery does as a means to configure browsers, sub-browsers
and the menu hierarchy.

There are numerous tools (e.g. Rigi [12], SHriMP [16], Ciao [3], SVT [9] and
GraphLog [6]) that provide different ways to visualize the structure of a soft-
ware system. JQuery is related to these tools in that a code browser is one
kind of visualization. SVT [9] is most closely related. It is a configurable soft-
ware visualization framework that relies on Prolog as a configuration language.
However, JQuery’s differs in that its configuration language is more declarative
and that its targeted design space is (deliberately) more limited. Consequently
JQuery strikes a completely different balance between cost and flexibility of its
configuration interface.

8 Discussion and Future Work

One area for future research is extending and broadening the targeted design
space: to other types of IDE extensions and to be less Java specific.

A second area for future research is the generation of efficient implementations
from declarative browser specifications. In this paper, we have talked about
configuration cost entirely in terms of user effort. We have not considered runtime
and memory efficiency of the browsers. Although efficiency was never the main
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concern for our work, it has become clear that it affects the practical usability
of a tool like JQuery. Indeed, such concerns have been an ongoing issue and the
TyRuBa query engine has had considerable work put into it in order to meet
the demands of producing browsers from realistic code bases in an interactive
environment. JQuery produced browsers, in its current implementation, cannot
compete with hand-crafted plugins. However, we believe that the declarative
nature of the specification should provide ample opportunities for automatic
optimizations and compilation. This is a very interesting area for future research
that could tap into a wealth of knowledge from databases and logic programming
languages.

9 Conclusion

We discussed how modern IDEs offer two levels of configurability that have
cost-profiles at the extreme ends of a spectrum. One mechanism is GUI-based
and is very easy and cheap to use but offers limited flexibility. Another is very
hard and expensive to use but allows complete control by linking in executable
imperative-style code.

We argued that the space in the middle between those two extremes is also
interesting and can be accessed by designing a configuration interface targeted
for a particular domain on top of a declarative programming language. We il-
lustrated this approach by presenting the JQuery tool, a highly configurable
Java code browsing tool that employs a declarative logic programming language
at the core of its configuration mechanism. We argued that JQuery achieves a
very open-ended configuration model that is still orders of magnitude cheaper
in terms of user effort than a typical plugin architecture.
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Abstract. Finite-domain constraint solvers based on Binary Decision
Diagrams (BDDs) are a powerful technique for solving constraint prob-
lems over finite set and integer variables represented as Boolean formulæ.
Boolean Satisfiability (SAT) solvers are another form of constraint solver
that operate on constraints on Boolean variables expressed in clausal
form. Modern SAT solvers have highly optimized propagation mecha-
nisms and also incorporate efficient conflict-clause learning algorithms
and effective search heuristics based on variable activity, but these tech-
niques have not been widely used in finite-domain solvers. In this paper
we show how to construct a hybrid BDD and SAT solver which inherits
the advantages of both solvers simultaneously. The hybrid solver makes
use of an efficient algorithm for capturing the inferences of a finite-
domain constraint solver in clausal form, allowing us to automatically
and transparently construct a SAT model of a finite-domain constraint
problem. Finally, we present experimental results demonstrating that the
hybrid solver can outperform both SAT and finite-domain solvers by a
substantial margin.

1 Introduction

Finite-domain constraint satisfaction problems (CSPs) are an important class of
problems with a wide variety of practical applications. There are many compet-
ing approaches for solving such problems, including propagation-based constraint
solvers and Boolean Satisfiability (SAT) solvers.

We have previously shown how to represent many finite-domain constraint
problems using Binary Decision Diagrams (BDDs) by modeling problems in
terms of Boolean variables and representing both variable domains and con-
straints as formulæ over these variables [10]. The BDD representation of these
formulæ allows us to “package” together groups of Boolean variables, where each
group represents a set, multiset, or integer variable, and to make inferences on
the sets of values that each group of variables can take simultaneously. This al-
lows us to describe bounds, domain, and other types of propagation using BDD
operations.

Another important class of finite-domain CSPs is the class of Boolean Satisfia-
bility problems. While there is a variety of algorithms for solving SAT problems,
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some of the most successful complete SAT solvers are based on variants of the
Davis-Putnam-Logemann-Loveland (DPLL) algorithm [6]. The basic algorithm
has existed for over forty years, and a great deal of effort has gone into producing
robust and efficient implementations. Three key elements of a modern SAT solver
are a suitable branching heuristic, an efficient implementation of propagation,
and the use of conflict-directed learning [22].

Most SAT solvers operate on problems expressed as a set of clauses, (although
recently there has been some interest in non-clausal representations for SAT
problems [20]). This uniform representation allows the use of highly efficient
data structures for performing unit propagation, and the generation of conflict
clauses in order to avoid repeating the same subsearch, as well to drive heuristics
that lead the search to new parts of the search space.

Modern SAT solvers are very effective on some kinds of problems, and prac-
tical SAT solvers such as MiniSAT [8] have been successfully applied to a wide
range of problems including electronic circuit fault detection and software veri-
fication. The main disadvantage of SAT solvers is that some kinds of constraints
are hard to model efficiently using clauses—for example the set constraint |S| = k
requires

(
n

k−1

)
+

(
n

k+1

)
clauses to express, and the resulting propagation is weak.

Although both BDD and SAT solvers are Boolean solvers, they represent
different tradeoffs in the general propagation-search paradigm: BDDs are ex-
pensive to manipulate but produce powerful propagation and minimize search,
while SAT propagation is quick and weak, leading to more search but hopefully
requiring less time overall. One of the unique advantages of the SAT solver comes
from the use of nogood learning, which allows substantial search space reduc-
tions for structured problems. To a certain extent the strengths of each solver
are complementary, and in this paper we show how to create a hybrid solver that
inherits from both.

In this paper, we present a novel approach to combining a BDD-based finite-
domain constraint solver andaSAT solver into an efficient hybrid constraint solver.
While dual modeling is not new, the key contribution of this paper is an efficient al-
gorithm for capturing the inferences of a finite-domain solver in clausal form. Not
only does this allow us to use the conflict-directed learning and backjumping al-
gorithms of a SAT solver in a finite-domain constraint solver, we can also use this
algorithmto lazily construct a SAT model from a finite-domain constraint problem
represented in BDD form, giving us some of the speed advantages of a SAT solver
without the need for an explicit clausal model of a problem.

The contributions of this paper are:

– We show how we can construct a hybrid constraint solver by pairing finite-
domain variables with a dual Boolean representation.

– We show how we can efficiently convert the inferences performed by a BDD
based solver into clausal form. These inferences can be used to lazily construct
a SAT model of a problem from a finite-domain model, and allow us to apply
conflict-directed learning techniques to the inferences of a finite-domain solver.

– We demonstrate experimentally that combining BDD and SAT solvers can
substantially improve performance on some set benchmarks.
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2 Propagation-Based Constraint Solving, BDDs and SAT

In this section we introduce definitions and notation for the rest of the paper.
Most of these definitions are standard (see e.g. [15]).

We consider a typed set of variables V = VI ∪VS made up of integer variables
VI , for which we use lower case letters such as x and y, and sets of integers
variables VS , for which we use upper case letters such as S and T .

A domain D is a complete mapping from a fixed (countable) set of variables
V to finite sets of integers (for the integer variables in VI) and to finite sets of
finite sets of integers (for the set variables in VS). A domain D1 is said to be
stronger than a domain D2, written D1 � D2, if D1(v) ⊆ D2(v) for all v ∈ V .

We frequently use set range notation: [L .. U ] denotes the set of sets of in-
tegers {A | L ⊆ A ⊆ U} when L and U are sets of integers. A set is said
to be convex if it can be expressed as a range. The convex closure of a set
S is the smallest range that includes S, and is written conv(S). For example
conv({{1, 3}, {1, 4, 5}, {1, 4, 6}}) = [{1} .. {1, 3, 4, 5, 6}]. We lift the concepts of
convex and convex closure to domains in the natural way.

A valuation θ is a mapping of integer and set variables to correspondingly
typed values, written {x1 �→ d1, . . . , xn �→ dn, S1 �→ A1, . . . , Sm �→ Am}. We
extend the valuation θ to map expressions or constraints involving the variables
in the natural way. Let vars be the function that returns the set of variables
appearing in an expression, constraint or valuation. In an abuse of notation,
we define a valuation θ to be an element of a domain D, written θ ∈ D, if
θ(vi) ∈ D(vi) for all vi ∈ vars(θ).

A constraint is a restriction placed on the allowable values for a set of vari-
ables. We shall be interested in constraints over integer and set variables. We
define the solutions of a constraint c to be the set of valuations θ that make that
constraint true, i.e. solns(c) = {θ | (vars(θ) = vars(c)) ∧ (� θ(c))}

We associate a propagator with every constraint. A propagator f is a mono-
tonically decreasing function from domains to domains, so D1 � D2 implies that
f(D1) � f(D2), and f(D) � D. A propagator f is correct for a constraint c if
and only if for all domains D: {θ | θ ∈ D}∩ solns(c) = {θ | θ ∈ f(D)} ∩ solns(c)
This is a weak restriction since, for example, the identity propagator is correct
for any constraints. We assume that all propagators are correct.

A set bounds propagator f for constraint c is a propagator that maps convex
domains to convex domains. For set problems typically set bounds propagators
are employed.

A propagation solver for a set of propagators F and a domain D repeatedly
applies the propagators in F starting from the domain D until a fixpoint is
reached.

2.1 Binary Decision Diagrams

A Reduced Ordered Binary Decision Diagram (ROBDD) is canonical represen-
tation of a propositional expression (up to reordering on the propositions), which
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permits an efficient implementation of many Boolean function operations, in-
cluding conjunction (∧), disjunction (∨), existential quantification (∃). In an
ROBDD each node is either 1 (true) or 0 (false) or of the form n(v, t, e) where
v is a Boolean variable, and t and e are ROBDDs. For more details the reader
is referred to the work of Bryant [3]. The modeling of constraint problems using
ROBDDs is discussed extensively in [10].

2.2 SAT and Unit Propagation

A proposition p ∈ P is a Boolean variable, where P denotes the universe of
Boolean variables. A literal l is either a proposition p or its negation ¬p. The
complement of a literal l, ¬l is ¬p if l = p or p if l = ¬p. A clause C is
a disjunction of literals. An assignment is a set of literals A such that ∀p ∈
P .{p,¬p} �⊆ A. An assignment A satisfies a clause C if one of the literals in C
appears in A.

A SAT solver takes a conjunction (or set) of clauses and determines if there is
an assignment that simultaneously satisfies all the clauses. Complete SAT solvers
typically involve some form of the DPLL algorithm which combines search and
propagation by recursively fixing the value of a proposition to either 1 (true)
or 0 (false) and using unit propagation to determine the logical consequences
of each decision made so far. The unit propagation algorithm finds all clauses
p1 ∨ p2 ∨ . . . ∨ pk where at least k − 1 of the literals are known to be false,
and asserts the remaining literal to be true (since it is the only possible way
for the clause to be satisfied). If all k literals are known to be false, then we
have discovered a conflict in the set of assignments made so far and we must
backtrack. Unit propagation can be performed very efficiently by using watched
literal techniques [16].

Modern SAT solvers make use of nogood learning in order to reduce the search
space, and guide search away from unprofitable areas. Nogood learning relies on
building an implication graph for values derived by unit propagation (although
the graph is usually represented implicitly). The implication graph is a directed
acyclic graph where the nodes l@t are pairs of literal l and timestamp t indicating
the time the literal became known.

Unit propagation on a clause l1∨· · · ∨ ln from nodes ¬l1@t1, . . . , ¬li−1@ti−1,
¬li+1@ti+1, . . . , ¬ln@tn, 1 ≤ i ≤ n adds a new node li@ti where ti is the max-
imum timestamp ti = max{t1, . . . , ti−1, ti+1, . . . , tn} as well as arcs ¬lj@tj →
li@ti, 1 ≤ j �= i ≤ n. If we discover a conflict from a clause l1 ∨ · · · ∨ ln using
literals ¬l1@t1, . . . ,¬ln@tn, we add a node ⊥@t where t = max(t1, . . . tn) and
arcs ¬li@ti → ⊥@t, 1 ≤ i ≤ n.

When we derive a contradiction then any cut across the graph that leaves the
contradiction on one side (the conflict side), and all the decisions (nodes without
incoming arcs) on the other side (the reason side) defines a nogood. Nogoods can be
added to the solver’s store of learnt clauses in order to assist with future decisions.

We have a choice of which cut of a conflict graph to take. The decision cut
simply keeps all the decisions (nodes without parents) (which corresponds to
the cut commonly chosen by Conflict-Directed Backjumping schemes in a CSP
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Fig. 1. An example implication graph, showing a possible set of implications on the
set of clauses (p9 ∨ ¬p2) ∧ (¬p1 ∨ p2 ∨ ¬p4 ∨ ¬p6) ∧ (¬p3 ∨ p5 ∨ p6 ∨ p7) ∧ (p2 ∨ ¬p3 ∨
p6 ∨ p8) ∧ (¬p7 ∨ ¬p8)

context). A cut scheme that has been shown to be more effective experimentally
in the SAT context, called 1-UIP [23], is to choose a cut that places only nodes
with the same timestamp as the contradiction on the conflict side; of these, only
nodes between the Unique Intersection Point (a node which dominates all nodes
between the conflict and itself) closest to the conflict and the conflict itself are
placed on the conflict side.

Example 1. Consider the implication graph shown in Figure 1. All the nodes with
the same timestamp as the contradiction are shown with shadow. The 1-UIP cut
is shown as the dashed line, since ¬p6 is the closest node to the conflict which
is included on all paths from the decision at time 5 to the confict. The nogood
generated is p2∨¬p3∨p5∨p6. The decision cut generates ¬p1∨¬p3∨¬p4∨p5∨p9.

3 A Hybrid SAT and Finite-Domain Constraint Solver

Since the powerful inference abilities of a finite-domain constraint solver and the
efficient propagation and conflict-directed learning of a SAT solver are to some
extent complementary, we would like to construct a hybrid solver that combines
the advantages of both. Such a hybrid solver can be created through a process
of dual modeling, where the same constraint problem is modeled in multiple
cooperating solvers.

There are several important points we must consider when creating a dual
model of a constraint problem:

– How should the problem variables and their domains be modeled in each
solver?

– How should deductions be communicated between the two solvers during the
search process?

– Which of the problem constraints be modeled in each solver, and how should
they be modeled?

– How should the execution of the search procedure and the two solvers be
scheduled?
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Fig. 2. Interactions between FD and SAT solvers and search

In the next three sections we outline our approach to these problems. An
illustration of the interaction of the two solvers is shown in Figure 2.

3.1 Boolean Modeling of Constraint Variables and Domains

As a first step in constructing a hybrid model of a constraint problem, we need
to establish how we will represent the constrained variables and their domains
in each solver. Since finite-domain solvers are more expressive than Boolean
models, it is reasonable to assume that we already have a finite-domain model
for a problem, and we need only consider the how to represent finite-domain
variables and domains in a propositional manner suitable for a SAT solver

Note that in the specific case of our hybrid solver the finite-domain solver is
based on BDDs and also operates using a very similar Boolean model [10], but
the discussion here is completely general and independent of the structure of the
finite-domain solver.

Set variables are natural to model in terms of propositional logic. Suppose
S is a set variable over a domain [∅ .. {1, . . . , n}]. We can model S as a set of
propositions P (S) = {S1, . . . , Sn}, where Si ↔ i ∈ S. Constraints then map to
propositional formulæ over these variables. For example, the expression S = A
for some fixed set A in [∅ .. {1, . . . , n}] is equivalent to the propositional formula
B(S = A) =

∧n
i=1 Si ↔ (i ∈ A).

Finite domain integer variables do not have such a natural propositional rep-
resentation. Many encodings are possible — we outline here direct and log en-
codings (for more details, see, e.g. [21]).

In the direct or unary encoding, we model a finite domain integer variable x
over a domain {0, . . . , n} by the propositions P (x) = {x0, . . . , xn} where xi holds
if and only if x = i. Since this representation would allow x to take on multiple
values at once, we must also add constraints stipulating that x must take exactly
one value: (x0∨· · ·∨xn)∧

∧n−1
i=0

∧n
j=i+1 ¬xi∨¬xj . The expression x = i for a fixed

value i is modeled by the propositional formula B(x = i) = xi ∧
∧n

j=0,j �=i ¬xj .
Note that we can think of the direct encoding as encoding integers as singleton
sets.
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Another representation of finite domain integer variables is a log or binary
encoding, which uses propositions P (x) = {x0, x1, . . . , xk} that correspond to
a binary representation x = x0 + 2x1 + · · · + 2kxk, where k = �log2 n�. The
expression x = i for a fixed value i is modeled as the propositional formula B(x =
i) =

∧k
j=0(xj ↔ ij) where ij, 0 ≤ j ≤ k is the jth bit of the binary encoding

of the number i. The log encoding does not require any auxiliary constraints
to ensure that each variable takes a single value. The log encoding is known
to produce weaker unit propagation than the direct encoding [21] but produces
smaller models in some cases and allows operations such as addition to be defined
more compactly.

Since we can map set or integer values to propositional formulæ, we can
easily map the domains of constrained variables as well. Given a variable v,
we can define the propositional representation B(D(v)) of the domain D(v) as
B(D(v)) =

∨
d∈D(v) B(v = d). Note that B(D(v)) is equivalent to a conjunction

of propositions if v is a set variable and D(v) is a convex set, or if v is an arbitrary
integer variable in the direct encoding. However, it is important to note that
with any of these encodings we can in theory represent arbitrary domains, not
necessarily just those defined by conjunctions of propositions. However, SAT
solvers are limited to domains represented as conjunctions of propositions, and
hence we confine our attention to conjunctive domains in this paper.

Example 2. Consider the set variable S which ranges over [∅ .. {1, 2, 3}], then
P (S) = {S1, S2, S3}. Then for the domain D(S) = [{1} .. {1, 2}] we have
B(D(S)) = S1 ∧ ¬S3. For the non convex domain D′(S) = {{1}, {2, 3}} then
B(D′(S)) = (S1 ∧ ¬S2 ∧ ¬S3) ∨ (¬S1 ∧ S2 ∧ S3).

For an integer x ranging over {0, 1, 2, 3} then the domain D(x) = {1, 2} in
the direct encoding is simply B(D(x)) = ¬x0 ∧ ¬x3, while in the log encoding
it is B(D(x)) = (x0 ∧ ¬x1) ∨ (¬x0 ∧ x1).

3.2 Channeling Constraints and Clause Generators

The most interesting part of constructing a dual solver is the channeling of
information between the finite-domain and SAT solvers. The standard approach
to channeling information between solvers is to create channeling constraints,
which ensure that the domains of the corresponding variables in each solver are
equal. While we could use such an approach when coupling a SAT solver and
a finite-domain solver, simply communicating information about the values in
a domain is insufficient to allow the SAT solver to build an inference graph
and perform nogood computations. In order for the SAT solver to compute
meaningful nogoods we also need to communicate the reasons for any deductions
made by finite-domain constraint propagation.

Our basic strategy is for each proposition p inferred through finite-domain
propagation we will derive an inference clause. An inference clause is a SAT
clause that is a logical consequence of a finite-domain propagator, and that
would have derived p through unit propagation from the variables that were
fixed at the time that the finite-domain propagator deduced p. This new clause
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effectively encapsulates an inference of a finite-domain propagator in a form that
the SAT solver can understand.

By adding inference clauses to the clause set of the SAT solver, we can perform
nogood learning and conflict-directed backjumping on the inferences of the finite-
domain solver. We can either add inference clauses explicitly to the SAT solver’s
store of learnt clauses, or extend the SAT solver so that inference clauses are
used implicitly for performing nogood calculations. In the former case, we are
effectively using finite-domain propagators as generators for SAT clauses, thus
removing the need for a SAT model of the problem. As the search progresses and
more inference clauses are added, effectively a SAT model of each finite domain
constraint is constructed.

While it would be possible to augment any finite-domain solver to generate
inference clauses by extending the propagator implementations on a case-by-
case basis, since our FD solver is based on BDDs we can derive these clauses
efficiently and automatically.

Let f be a propagator for a constraint c and D be a domain, and suppose
f(D) = D′ where D′ �= D. Let vars(c) = {v1, . . . , vn}. Clearly we have that
(c ∧

∧n
i=1

∨
x∈D(vi)

vi = x) →
∧n

i=1

∨
x∈D′(vi)

vi = x. In the Boolean formalism
this is equivalent to (B(c) ∧

∧n
i=1 B(D(vi))) →

∧n
i=1 B(D′(vi)), where B(c) is a

formula representing constraint c.
Now suppose B(D) and B(D′) are conjunctions of propositions. This assump-

tion holds if we restrict ourselves to use set bounds propagators [10]. We can
treat these conjunctions as sets. Let p ∈ B(D′(vi)) \ B(D(vi)) be a newly in-
ferred proposition. Then in any context where the constraint c holds, the clause
(
∧n

i=1 B(D(vi))) → p or equivalently (
∨n

i=1 ¬B(D(vi))) ∨ p also holds, and p
would have been derived from this clause through unit propagation. We call
this clause the simple inference of p, which we can add as a new (redundant)
constraint.

Example 3. Consider the constraint c ≡ |S| = x where S ranges over
[∅ .. {1, . . . , 5}] and x ranges over {0, 1, 2, 3, 4, 5}. Let D(S) = [{1, 2}, {1, 2, 4}]
and D(x) = {3, 4, 5}. Then the strongest set bounds propagator f for c is such
that f(D) = D′ where D′(S) = [{1, 2, 4}, {1, 2, 4}], D′(x) = {3}.

In the Boolean representation B(D(S)) = S1 ∧ S2 ∧ ¬S3 ∧ ¬S5, B(D(x)) =
¬x0 ∧ ¬x1 ∧ ¬x2, B(D′(S)) = S1 ∧ S2 ∧ ¬S3 ∧ S4 ∧ ¬S5, and B(D′(x)) =
¬x0 ∧¬x1 ∧¬x2 ∧ x3 ∧¬x4 ∧¬x5. The newly inferred propositions are S4, ¬x4,
¬x5, and x3. Considering ¬x4, we can see that the clause (S1 ∧S2 ∧¬S3 ∧¬S5 ∧
¬x0 ∧¬x1 ∧¬x2) → ¬x4 or equivalently ¬S1 ∨¬S2 ∨S3 ∨S5 ∨x0 ∨x1 ∨x2 ∨¬x4

is valid and captures the deduction on x4 made by the constraint propagation.
Similarly we can produce one clause for each of the other propositions deduced
by propagation.

The simple clauses generated above, while logically valid, are not minimal,
and hence are unlikely to generate much useful propagation since they will only
produce inferences when all but one of the Boolean variables in the clause are
fixed. Since the decision variables of all of the variables involved in the constraint
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mininf(p,c,P)

let M := P
let {p1, . . . , pm} := P
for i := 1..m

if ¬ sat(B(c) ∧ ¬p ∧ (M \ {pi}))
M := M \ {pi}

return M

Fig. 3. A generic algorithm for finding minimal reasons for inferences

are included in the clause, we are unlikely to revisit this particular combination
of variable assignments again as the search progresses. In order to maximize the
chance of generating useful inferences, we need to generate minimal reasons for
each inference.

We define a minimal inference of p as follows. Let P =
⋃n

i=1 B(D(vi))) be
the set of candidate propositions for the minimal inference of p and let M =
{m1, . . . , mk} ⊆ P . We say M is a sufficient set of reasons for p if (B(c) ∧∧k

j=1 mj) → p. We say M is a minimal set of reasons for p if M is a sufficient
set of reasons for p and for any sufficient set N ⊆M we have M = N .

Example 4. For the propagation in Example 3 some minimal reasons define the
inference clauses:

(S1 ∧ S2 ∧ ¬S3 ∧ ¬S5 ∧ ¬x0 ∧ ¬x1 ∧ ¬x2)→ S4

(¬S3 ∧ ¬S5)→ ¬x4

¬S3 → ¬x5

(S1 ∧ S2 ∧ ¬S3 ∧ ¬S5 ∧ ¬x2)→ x3

Note that other minimal reasons exist, e.g. ¬S5 → ¬x5.

In general a minimal set of reasons is not unique. It is also possible that the
same proposition would be inferred by multiple propagators, each propagator
producing different minimal sets of reasons, and hence the reasons deduced for
the value of a proposition depend on the order of execution of the propagators.

A generic algorithm for computing minimal reasons for inferences is shown in
Figure 3. This algorithm needs O(n) satisfiability checks where n is the number
of candidate propositions. Such an algorithm would be prohibitive to use in
general, although a divide-and-conquer version similar to the QUICKXPLAIN
algorithm of [11] would perform better.

However, we can specialize this algorithm for use in a BDD context, leading
to an efficient algorithm for inferring a minimal set of reasons for a deduction p.
First we generate the BDD for G = ∃̄vars(P )B(c) ∧ ¬p, that is the constraint c
with the information that p is false, restricted to the propositions P of interest
in determining the minimal set M . We then recursively visit the BDD G deter-
mining whether each proposition in order is required for a contradiction. The
resulting algorithm is shown in Figure 4.
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BDDmininf(G,P ,M)
if G = 0 return M
let G = n(v, Gv, G¬v)
let P = n(vP , PvP , P¬vP )
if PvP = 0 then l := ¬vP else l := vP

if v = vP then
if BDDsatconj(G¬l,Pl) then return BDDmininf(Gl,Pl,M ∪ {l})
else return BDDmininf(Gl ∨ G¬l, Pl, M)

else
return BDDmininf(G,Pl,M)

Fig. 4. A BDD-based algorithm for finding minimal reasons for inferences

The algorithm works as follows. The initial call is BDDmininf(G, P , ∅). The
first argument is the remaining BDD, the second the remaining set of possible
reasons (represented as a conjunction BDD) and the last is the set of propositions
in the minimal inference so far (which in practice is also represented by a BDD).
The algorithm maintains the invariant that G ∧ P is unsatisfiable.

If the BDD G is 0 (false) then no further reasons are required and we return
the set M . The BDD cannot be 1 (true) since it must be unsatisfiable when
conjoined with P . We find the literal l in P with the least variable vP in the
BDD variable ordering. If the variable v at the top of the BDD G is not the
same then the literal l is irrelevant since it does not appear in G, and so we
recurse, looking at the next least literal. Otherwise we check whether G¬l ∧ Pl

is satisfiable which corresponds to if the variable v takes the opposite value
from l. If this is satisfiable then l is required to make a minimal inference, since
removing it would lead to something satisfiable with the remainder Pl. Hence
we add l to M and follow the l choice in the BDD G recursively. Otherwise l is
not required, since the remainder of P is sufficient to ensure that both branches
of G are unsatisfiable. We project out the variable v from G obtaining Gv ∨G¬v

(this requires building new BDD nodes) and recursively proceed.
Note that BDDsatconj(G, H) checks whether the conjunction H is a satisfying

assignment for G, and simply requires following the path H in the BDD G. It
does not require constructing new BDD nodes.

3.3 Constraint Modeling, Scheduling and Search

We have a great deal of flexibility in modeling the problem constraints in each
solver. However, as discussed in Section 3.2, we do not need to construct a model
of a constraint problem for the SAT solver — we can lazily construct it from
the finite-domain model. However, it is also possible that in some cases better
performance may be obtained by an explicit dual model, although this is not
borne out by the experiments in Section 4. Due to space constraints we do not
discuss explicit SAT models of constraint problems here.

We also have a great deal of flexibility in deciding how to schedule the propaga-
tion of the SAT and BDD solvers. In our solver, we choose to treat the SAT solver
as a single “propagator”which is executed at a higher priority than any other prop-
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agator. This ensures that the cheap SAT inferences are performed before the rela-
tively expensive finite-domain inferences. Various labeling heuristics can be used,
and we present experimental results for a sequential labeling heuristic as well as
the Variable-State-Independent-Decaying-Sum (VSIDS) SAT solver heuristic.

4 Experimental Results

We have implemented a hybrid BDD and SAT solver in the Mercury system [19].
The BDD solver makes use of the CUDD BDD package [18] while the SAT solver
is an interface to MiniSAT [8], but exporting control of search to Mercury.

The “Social Golfers” problem (problem prob010 of CSPLib) is problem com-
monly used as a benchmark for set CSP solvers. The aim of this problem is to
arrange N = g×s golfers into g groups of s players for each of w weeks, such that
no two players play together more than once. We can model this problem as a
set constraint problem using a w×g matrix of set variables vij , where 1 ≤ i ≤ w
is the week index and 1 ≤ j ≤ g is the group index. See [10] for the model in
detail, although in this paper we have added constraints that allocate the golfers
in sequential order to the first week in order to remove symmetries.

All test cases were run on a cluster of 8 identical 2.4Ghz Pentium 4 machines
with 1Gb RAM and 2Gb swap space. Each test case was repeated 3 times,
and the lowest of the 3 results used. In the result tables: “*” denotes a test
case without a solution, “—” denotes failure to complete a test case within 10
minutes, and “×” denotes an out of memory error.

From Table 1, we can see that the best of the hybrid solvers outperforms the
BDD bounds and (split) domain solvers that were presented in [10] on almost all of
the test cases.1 Using simple clause learning (B+SB) is not useful, since the over-
head of deriving and storing nogoods is not repaid through search space reduction.
The most surprising column is perhaps B+M which shows the overhead of mini-
mizing the clauses without reducing the search space. It appears that generating
minimized nogoods requires less than double the time taken for the original prop-
agation. Once we make use of the minimal clauses (B+MB) by recording nogoods
and performing backjumping we often improve on the bounds solver, but inter-
estingly adding all of the inferred clauses to the SAT solver (B+MA) can lead to
substantial further reductions in the search space. The B+MA column corresponds
to a hybrid where in some sense we lazily build a CNF model of the problem using
only the “useful” clauses found by the BDD model.

Table 2 presents results obtained using a Variable-State-Independent-
Decaying-Sum heuristic, which is commonly used by SAT solvers. This table also
contains a comparison with the SAT solvers MiniSAT and zChaff, the pseudo-
boolean SAT solver MiniSAT+, and a dual BDD and SAT model with all con-
straints but cardinality constraints duplicated as SAT clauses. It appears that
as in the sequential case, the B+MA technique performs the best out of all of

1 Note that the BDD bounds solver is substantially faster on these examples than solvers
such as Eclipse or Mozart due to better modeling capabilities and a more efficient im-
plementation language [10].
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Table 1. Performance results for the Social Golfers problem, using a sequential,
smallest-element-in-set labeling heuristic. “Domain” = BDD Domain solver of [10].
“Bounds” = BDD Bounds solver of [10]. “B+SB” = Bounds + simple clause learn-
ing + backjumping. “B+M” = Bounds + minimized clause learning, no backjumping.
“B+MB” = Bounds + minimized clause learning + backjumping. “B+MA” = Bounds
+ adding minimized clauses to the SAT solver as learnt clauses.

Problem
Domain Bounds B+SB B+M B+MB B+MA

time fails time fails time fails time time fails time fails
w-g-s /s /s /s /s /s /s

2-5-4 0.1 0 0.1 30 <0.1 28 0.1 0.1 23 0.1 11
2-6-4 0.1 0 0.4 2036 0.8 1212 1.2 0.5 499 0.1 45
2-7-4 0.3 0 1.2 4447 1.9 2087 3.7 0.8 534 0.2 90
2-8-5 1.3 0 — — — — — — — 0.8 472
3-5-4 0.2 0 0.1 30 0.1 28 0.1 0.1 23 0.1 11
3-6-4 1.3 0 1.3 2039 1.6 1215 2.5 1.0 502 0.2 48
3-7-4 8.0 0 3.6 4492 3.7 2131 7.7 1.8 551 0.5 99
4-5-4 0.5 0 0.1 30 0.2 28 0.2 0.2 23 0.2 11
4-6-5 98.0 0 19.6 12747 23.1 8600 33.5 9.9 2323 0.7 81
4-7-4 — — 7.0 4498 6.3 2137 12.2 2.9 557 0.8 105
4-9-4 — — 1.5 71 1.7 69 2.2 2.0 43 1.9 32
5-4-3 (*) 29.0 5165 87.6 63519 140.8 43402 190.9 52.3 10440 12.0 9568
5-5-4 2.9 41 5.4 2686 7.1 1661 12.6 9.4 1356 2.3 1167
5-7-4 — — 11.9 4583 9.7 2195 19.7 4.6 608 1.5 159
5-8-3 7.3 0 0.7 14 0.7 13 0.9 0.9 13 0.9 12
6-4-3 (*) 22.4 2132 130.3 61647 183.8 42986 235.7 12.6 1774 2.1 908
6-5-3 1.4 82 3.0 1455 4.2 967 6.9 2.5 327 0.9 282
6-6-3 1.3 0 0.3 5 0.3 5 0.4 0.4 5 0.4 5
7-5-3 — — — — — — — 127.5 11945 18.2 6154
7-5-5 (*) <0.1 0 0.9 131 1.0 131 1.2 1.0 99 0.8 100

the solvers. The SAT solvers are frequently disadvantaged in this comparison
because the representation of the cardinality constraints frequently requires a
very large number of clauses.

5 Related Work and Conclusion

At present we are unaware of any other BDD based propagation solvers than
our own, so in that sense the work is completely novel. But at a feature level
there are relationships with much previous work.

Modeling of finite domains as Booleans is well understood and a standard
form of dual modeling (see e.g. [4]). There has been interest in encoding CSPs
as SAT problems [21]. The novel part of our approach is representing the actions
of a finite-domain propagator in terms of clausal inferences. Even though the
propagation rules of [4] and membership rules of [1] used to model propagation
are similar, they only define directional inferences for modeling the behavior of
propagators, rather than directly modeling logical inferences.
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Table 2. Performance results for the Social Golfers problem, using a VSIDS labeling
heuristic. “B+MB” = Bounds + minimized clause learning + backjumping. “B+MA”
= Bounds + adding minimized clauses to the SAT solver as learnt clauses. “Dual” =
Bounds + minimized clause learning + backjumping + Dual SAT/BDD model. “Min-
iSAT” = MiniSAT SAT solver [8]. “zChaff” = zChaff SAT solver [16]. “MiniSAT+” =
MiniSAT with Pseudo-boolean extensions [9].

Problem
B+MB B+MA Dual MiniSAT zChaff MiniSAT+

time fails time fails time fails time fails time fails time
w-g-s /s /s /s /s /s /s

2-5-4 0.1 21 0.1 22 0.1 4 0.2 273 0.2 767 0.2
2-6-4 0.3 83 0.1 64 0.1 12 0.5 125 0.9 1850 0.3
2-7-4 0.7 161 0.2 119 0.2 10 1.4 282 2.7 2858 0.6
2-8-5 3.6 437 1.3 622 0.8 130 × × × × 1.5
3-5-4 0.1 26 0.1 24 0.5 215 0.3 534 2.2 7018 0.6
3-6-4 0.5 102 0.3 58 1.5 374 0.9 488 2.0 2715 1.2
3-7-4 1.1 128 0.6 92 3.5 493 6.9 7517 3.3 2348 2.1
4-5-4 0.2 27 0.4 122 2.0 900 0.5 543 3.3 9580 1.2
4-6-5 2.1 186 1.3 304 9.7 2135 17.0 763 × × 4.0
4-7-4 1.0 40 1.0 98 13.1 1546 53.8 47801 281.7 166710 4.7
4-9-4 2.0 35 2.0 59 41.3 2161 — — × × 12.9
5-4-3 (*) 66.0 13126 5.6 5876 11.1 10750 0.4 4554 1.4 9044 1.2
5-5-4 9.4 667 1.9 581 2.4 785 1.4 3291 2.3 7230 2.6
5-7-4 2.2 96 1.5 104 29.3 3458 — — — — 8.5
5-8-3 1.3 35 1.7 425 10.7 1212 — — 46.6 110980 7.3
6-4-3 (*) 0.3 74 0.2 71 1.3 637 0.3 4307 0.8 5975 1.1
6-5-3 11.1 1062 4.3 2801 8.2 3669 0.8 7795 74.4 186858 2.2
6-6-3 0.4 16 1.0 275 5.6 1310 2.2 17869 2.6 11666 3.5
7-5-3 127.6 14237 18.0 7018 35.8 118876 66.1 197714 396.8 562386 6.3
7-5-5 (*) 86.1 2513 2.0 139 1.4 97 8.8 1858 16.9 6910 6.9

There is a substantial body of work on look back methods in constraint satis-
faction (see e.g. Dechter [7], chapter 6), but there seems little evidence of success
for look back methods that combine with propagation. The most successful com-
bination appears to be Forward Checking with Conflict Directed Backjumping
(FC-CBJ) [17]. But other work by Bessière and Regin [2] calls into question
whether FC-CBJ should be considered competitive. They showed that main-
taining arc consistency (MAC) with an appropriate search strategy is usually
better than FC-CBJ, and that conflict directed backjumping did not appear
to improve the empirical performance of MAC. We believe our results do not
match this conclusion primarily because we are able to use the highly efficient
data structures of a SAT solver for maintaining and propagating nogoods, as well
as an efficient BDD-based algorithm for calculating dependencies, thus making
conflict-directed backjumping a worthwhile investment.

The only propagation based solver we are aware of that incorporates nogoods
is the PaLM system [12]. It has been used to investigate new search methods
based principally on dynamic backtracking. Like most previous work on nogoods
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in CSPs it keeps explanations and derives nogoods based on the constraints and
decisions made in the search, rather than a SAT solver which simply records the
inferences. Effectively it always uses decision cuts, instead of the more powerful
1-UIP nogoods. The system has been used to show that nogoods can be used
constructively inside a propagation based solver [13].

The closest work to our own is that of Katsirelos and Bacchus [14], which
showed that one could use nogood technology derived from SAT for storing and
managing nogoods in a CSP system using FC-CBJ. Unfortunately no results
were presented that combined MAC with nogood recording, which appears to
limit the performance of the resulting solver. Another difference is that they
don’t appear to record the FC inferences as clauses, acting rather like S+MB
rather than S+MA. They also reported no success with using SAT-derived la-
beling heuristics, which does not match our experience. The closest work to our
implication detection algorithm is that of Damiano and Kukula [5]. In this work,
however, the BDDs are static and not used for finite-domain propagation.

The use of nogoods has lead to a substantial improvement in the ability of
SAT solvers to solve practical problems. SAT solvers treat nogoods both more
efficiently than traditional CBJ approaches, but also learn better nogoods from
a conflict. Our work shows at least in the case of set bounds propagation there
is an advantage to using nogoods, because we can quickly determine minimal
inferences and make use of the clever SAT technology to both generate and
efficiently propagate nogoods.

Although we have hybridized a BDD-based finite domain constraint solver,
we could similarly hybridize a more conventional finite domain propagation con-
straint solver by hard coding the minimal inferences for each primitive constraint
supported by the solver. The advantage of BDD-based approach is that it is
completely generic, and requires no extra work to support the wide variety of
constraints that can be modeled as BDDs and is surprisingly fast.

For future work, we intend to try combining nogood learning with domain
propagation, although this is more difficult to achieve, and possibly of less value.
We will also try adding a 0-1 Integer Linear Programming solver into the hybrid
solver, in the hope of producing a solver with better optimization capabilities.

In conclusion, we have demonstrated that by combining finite-domain con-
straint propagation and SAT techniques we can produce a highly efficient hy-
brid solver, which outperforms either of the original solvers on benchmarks. The
high performance of this solver is a result of an efficient algorithm for accurately
capturing the inferences of a finite-domain constraint solver as SAT clauses.
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Abstract. The logic programming language Mercury is designed to sup-
port programming in the large. Programmer declarations in conjunction
with powerful compile-time analysis and optimization allow Mercury pro-
grams to be very efficient. The original design of Mercury did not support
constraint logic programming (CLP). This paper describes the extensions
we added to Mercury to support CLP. Unlike similarly motivated exten-
sions to Prolog systems, our objectives included preserving the purity of
Mercury programs as much as possible, as well as avoiding any impact
on the efficiency of non-CLP predicates and functions.

1 Introduction

Constraint logic programming (CLP) [9] is considered the archetypal form of
constraint programming thanks to three properties inherited from logic pro-
gramming: its declarativeness, which allows users to state problems simply and
correctly, its relational nature, which suits the definition and usage of constraints,
and its built-in backtracking, which simplifies the specification of search. How-
ever, declarativeness also complicates the implementation of efficient constraint
solvers, since this often requires the use of programming techniques (such as
destructive update or control of the goal execution order) that lack a straight-
forward declarative reading.

As a result, constraint solvers are often implemented in other (non-declarative)
languages, thus achieving efficiency of constraint solving but incurring an inter-
face overhead between the modelling language and the constraint solver. Not only
must the solver interface allow constraints to be passed to the solver, but it must
also support memory management and backtracking. Typically such function-
ality is not directly provided by external solvers, making the interface complex
and unnecessarily inefficient. Furthermore, the common need to access internal
solver information means that the representation of the constraint store and its
efficient but non-declarative manipulation spreads throughout the CLP inter-
face. Since virtually no CLP languages make a distinction between declarative
and non-declarative code (effectively making all code non-declarative) CLP is,
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in practice, less efficient and arguably no cleaner than constraint programming
embedded within a procedural paradigm.

In contrast to CLP, Mercury [12] has explored a different direction for the logic
programming paradigm: that of a purely declarative general purpose language
designed to support well-engineered, efficient, large programs. This is achieved by
including an effective module system, strong, expressive, and statically checked
type, mode, and determinism systems, clear separation between declarative and
non-declarative code, and extensive compiler optimizations.

The above characteristics make Mercury an excellent candidate for achiev-
ing our objective: to design and implement a CLP platform that retains the
advantages of CLP without compromising on programming style, efficiency, or
scalability. This objective is similar to that driving the design of the HAL lan-
guage [3], which compiled to Mercury, adopted its module, type, mode, and
determinism systems, and extended them to support solvers. We chose instead
to extend Mercury to become itself a CLP language. Our reasons for doing this
were basically software engineering reasons: the HAL compiler duplicates much
of the work done by the Mercury compiler and generates Mercury code. It is
significantly simpler and more efficient to have all this work done under one
roof.

Our extension of Mercury builds on some of the authors’ positive and negative
experiences building and using HAL. Indeed, while the main change required to
support constraint solving in Mercury (an extension to the mode system to allow
constrained variables, as described in section 3.1) was done to support HAL’s
generation of Mercury code, the design of several key issues in this paper, such
as the handling of solver types and solver interfaces, is improved significantly
compared with HAL. We believe these changes extend Mercury’s support for
constraint programming a significant step further, making it a clean declarative
language for implementing efficient constraint solvers.

Our main contribution in this paper is a new design for solver types that
provides a clean separation between the viewpoint of the solver user (the external
view) which sees them as traditional solver variables, and the viewpoint of the
solver implementor (the internal view) which sees them as data structures used
to access the information required by the external view. Our extension supports
this duality through the use of two different types with different instantiation
states, linked together by a new solver type declaration. Several “solver interface
cast” functions are automatically generated from this solver type declaration to
allow easy conversion from one type and instantiation state to the others.

The two different types and instantiation states make it easier for solver im-
plementors to provide a purely declarative interface to users, while still using
imperative techniques. Thus, only solver implementors need to peek below the
“purity” hood. This solution is not only semantically cleaner than that used in
HAL, but also more powerful.

The rest of the paper is organized as follows. Section 2 introduces the nec-
essary background. Section 3 describes the changes required to allow Mercury
programs to use solvers written in other languages, while Section 4 describes
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the features we added to allow solvers to be written in Mercury itself, possi-
bly as hybrid solvers written on top of other solvers. The last section provides
comparisons to related work.

2 Background

While the syntax of Mercury is based on the syntax of Prolog, semantically the
two languages are very different due to Mercury’s purity; its type, mode, deter-
minism and module systems; and its support for evaluable functions. Mercury
has a strong Hindley-Milner type system very similar to Haskell’s. Mercury pro-
grams are statically typed; the compiler knows the type of every argument of
every predicate (from declarations or inference) and every local variable (from
inference).

The initial version of the mode system classified each predicate argument as
either input or output. If input, the argument passed by the caller must be a
ground term; if output, the argument passed by the caller must be a distinct free
variable, which the predicate or function will instantiate to a ground term. The
extensions we describe later in this paper introduce other instantiation states and
modes. It is possible for a predicate or function to have more than one mode;
the usual example is append, which has two principal modes: append(in,in,out)
and append(out,out,in). We call each mode of a predicate or function a procedure.
Each procedure has a determinism, which puts limits on the number of its pos-
sible solutions. Procedures with determinism det succeed exactly once; semidet
procedures succeed at most once; multi procedures succeed at least once; while
nondet procedures may succeed any number of times.

2.1 Foreign Code and Purity

Mercury supports access to code written in other languages by allowing the
implementation of a Mercury predicate or function to be given in one of the
languages supported by the Mercury compiler. On Unix systems, that means C;
when generating code for .NET, it means C# or managed C++. For example,
the syntax for defining a function sin/1 in C is:

:- func sin(float) = float.
:- pragma foreign proc(“C”, sin(X::in) = (Result::out), [promise pure],

“Result = sin(X);”).

The arguments of the foreign proc pragma give the language of the code, the
name of the predicate or function together with its arguments and their modes,
a list of attributes, and the foreign code itself. The promise pure attribute is part
of the Mercury purity system, which classifies every predicate into one of the
following three categories:

pure — the predicate is referentially transparent: the set of values it computes
for its output arguments is completely determined by the values of the input
arguments. Calls to such predicates may be optimized away or reordered
freely.
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impure — the predicate is not referentially transparent: the set of values it
computes for its output arguments may depend on the current state of the
computation in an arbitrary way. The execution of a call to an impure predi-
cate may affect the behavior of future calls to impure and semipure predicates
in an arbitrary manner. Calls to such predicates cannot be optimized away
or reordered.

semipure — again, the predicate is not referentially transparent. However, the
execution of a call to a semipure predicate cannot affect the behavior of
future calls to impure and semipure predicates. Calls to such predicates can
be optimized away or reordered only within the fenceposts formed by the
surrounding impure calls.

Thus, predicates that write (and possibly read) state beyond their arguments
are impure, while those that read but do not write are semipure:

:- semipure pred get global(globaltype::out) is det.
:- pragma foreign proc(“C”, get global(X::out), [promise semipure],

“X = some global variable;”).
:- impure pred set global(globaltype::in) is det.
:- pragma foreign proc(“C”, set global(X::in), [],

“some global variable = X;”).

Mercury allows programs to use impure code to implement a pure interface.
Non-pure calls must be marked, and the user must promise that the predicate
at the interface behaves as a pure predicate (i.e., its outputs depend only on
its inputs). One example is the solutions predicate, which returns all solutions
of a given goal as a sorted list. While this interface is purely declarative, the
implementation of solutions uses a failure-driven loop patterned after Prolog’s
findall. After every success of the given goal, it saves the solution in a global
variable and backtracks; when the goal has no more solutions, it picks up the list
of recorded solutions from the global variable, sorts them and returns the result.
This code is clearly impure, but the effect of this impurity is not visible outside
solutions, because no other part of the system looks at that global variable. While
predicates implemented in foreign languages are impure by default, Mercury
predicates are pure unless they call semipure or impure predicates.

2.2 Type-Specific Representation and Equality

Since all types are known at compile time, term representation is specialized for
each type. A given bit pattern may thus mean one term if it represents a value of
type t1, and another for a value of type t2. The generic unify and compare pred-
icates take an extra input describing the type of the arguments, which is used to
invoke the specific unify or compare predicate for that type. These type-specific
unify and compare predicates are usually created automatically by the compiler
from the type definition, but programmers are allowed to define their own unify
and/or compare predicates. For Mercury types defined in foreign languages, this
is the only way unification and comparison can be defined. Additionally, this
can also be useful for Mercury types on which semantic equality differs from
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structural equality, as it is the case when using unordered lists that may contain
duplicates to represent sets. The type declaration:

:- type set unordlist(T) −→ unord(list(T))
where equality is sort elimdups and unify,

comparison is sort elimdups and compare.

specifies that for values of type set unordlist(T), where T can be any type, uni-
fication should be defined by the sort elimdups and unify predicate. User-defined
equality imposes a proof obligation on the programmer, who must ensure that
the equality predicate satisfies the usual properties of reflexivity, transitivity,
commutativity and, most importantly, equivalence under replacement of equal
objects. In other words, given A = B, it should be possible to substitute B for
A in any call in the program without changing the call’s results, with the ex-
ception of calls to semipure and impure predicates, which are known not to be
referentially transparent [6].

3 Interfacing to External Solvers

The easiest way to add constraint solving capability to a Mercury program is
to provide an interface to an existing solver such as CPLEX [2] written in a
foreign language. The natural way to do this is to create a module that exports
the operations of the external solver together with an abstract type representing
the variables that participate in the constraints. This requires an extension of
the mode system, an extension that is also needed for writing solvers entirely in
Mercury, as we will discuss in section 4.

3.1 New Versus Old Variables

The standard version of the Mercury mode system requires the compiler to know
exactly which goal binds each variable. This is inherently impossible to achieve
in constraint programs since, given a sequence of constraints, the particular
constraint that fixes the value of a variable is frequently data dependent. We
therefore added an instantiation state called old which indicates the variable is
known to a solver and thus may be constrained, but it is not known whether it
is ground. For example, a finite domain variable might be known to be greater
than 3 and smaller than 7 (thus, it is not free), but its exact value might not be
known yet (thus, it is not semantically ground either).

All variables start life in instantiation state new. For ordinary variables life is
simple: at some point known to the compiler they become ground. For variables
that occur in constraints, things are a bit more complex. When they first become
known to their constraint solver (at a point known to the compiler) they change
from new to old. Their instantiation state stays old as more constraints are added
to them, unless they participate in an operation that is known to fix their value,
in which case they become ground. However, most constrained variables die old.

The predicate or function that first makes a variable known to a solver takes
that variable from instantiation state new to old (referred to as argument mode
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no, after their initials). In most cases, this is a specialized initialization predicate
that does nothing else. Usually, solver operations work only on variables that
have already been initialized, so they take solver variables from instantiation
state old to old, which we abbreviate as argument mode oo. In some solvers,
adding a constraint can be more efficient if some of its variables are known
not to have previous constraints on them. In such cases, the solver may export
operations that both initialize a variable and put a constraint on it. For example,
a function like addition (+) on a constrained float type cfloat may be declared
as

:- pred cfloat + cfloat = cfloat.
:- mode oo + oo = no is det.

The set of things user programs can do with old variables is restricted to pass-
ing them around, putting them into data structures, and calling the operations of
their solver module. (This is enforced by the definition of their type being visible
only in the solver module; they are not distinguished syntactically from other
variables.) Since the concrete representation of old variables is usually just an in-
dex into the constraint store, unifying them with a term or with another variable
using Mercury’s usual structural equality is not meaningful. Solver programmers
must avoid this unsoundness by defining type-specific equality predicates for the
types of constrained variables.

3.2 Tell Versus Ask Goals

Solver operations can usually be divided into two classes, tells and asks (some
operations are both). While tell operations add new constraints to the store, ask
operations inspect the store, usually to decide whether a constraint is entailed
by it or not. Thus, tell operations are usually semidet, since they might find the
resulting store to be inconsistent. It is also possible for a tell operation to be det
if it works with fresh (new) variables, as in the addition example above.

Tell operations can be (and usually are) pure. Even though their implementa-
tion includes side-effects (updates to the global constraint store), these are not
visible to the solver user as long as the solver ensures the operations are order-
independent, i.e., the consistency or inconsistency of the store does not depend
on the order in which constraints are added. Consider the Herbrand constraint
solver built into every Prolog system. A unification is a tell operation which adds
a new Herbrand constraint to the store, and it is implemented via side-effects
such as making one variable point to another. Nevertheless, from the user’s point
of view, the solver maintains referential transparency and is thus pure.

Unfortunately, tell constraints can cause problems when appearing in a
negated context, i.e., in the body of a negation or in the condition of an if-
then-else (if C then T else E is semantically equivalent to (C ∧ T )∨ (¬∃C ∧E)).
This is because tell constraints often have arguments of mode oo, and Mer-
cury cannot decide whether these arguments become further constrained by the
tell. If they are, this is unsound since the negated goal binds variables visible
from the outside. This can, for example, destroy the commutativity of conjunc-
tion: if X and Y are initially unconstrained, then executing X ≥ Y, not(X < Y)
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should succeed, whereas not(X < Y), X ≥ Y would fail (X < Y would succeed
after constraining X and Y, so its negation would fail). Tell constraints occuring
in negated contexts should be translated to ask constraints (see e.g. [4]). Our
current solution is to implicitly make impure any goal occurring in a negated
context that contains a nonlocal variable with inst old. In these cases, it is up to
the programmer to decide whether such goals really are pure and add a purity
promise if they are.

The result of executing an ask constraint depends upon the state of the con-
straint store, and thus upon when it is executed. Whereas tell goals can be
reordered arbitrarily with respect to each other, ask goals should not be re-
ordered with respect to tell goals. Furthermore, since some ask goals also change
the constraint store, they should not be reordered with respect to other ask
goals either. The simplest way to achieve this is to make them impure. This is
also semantically desirable, since the undisciplined use of ask goals can break
referential transparency. Consider the ask constraint fixed(X) which succeeds if
solver variable X is fixed to a unique value. The goals fixed(X), X = 3 and X =
3, fixed(X) would have different behaviour.

4 Writing Constraint Solvers in Mercury

We want to allow programmers to write solvers directly in Mercury, either from
scratch, or using other solvers. This requires significant additional changes to
the language.

4.1 Solver Types

Solver users see constrained variables as black boxes whose implementation is
hidden, and which spend most of their life in instantiation state old. Solver
writers, on the other hand, must know the constraint variable’s structure and
must be able to manipulate it. For efficiency, this usually requires constraint
variables to have a more concrete instantiation state such as ground. While the
notion of abstract data types can be used to provide the user’s view, we need a
new mechanism, which we call solver types, to support the solver writer’s view.

Solver types are for variables whose values may have constraints placed on
them. Solver types are exported abstractly, i.e., their definition stays hidden and
the only operations users can invoke on their values are those exported by the
solver module. The following provides the module interface of the solver we will
use as our running example:

:- solver type po vertex.
:- pred init(po vertex::no) is det.
:- pred eq(po vertex::oo, po vertex::oo) is semidet.
:- pred ’<’(po vertex::oo, po vertex::oo) is semidet.
:- pred ’≤’(po vertex::oo, po vertex::oo) is semidet.
:- impure pred order(list(po vertex)::in, list(po vertex)::out) is semidet.
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The first line declares po vertex to be an abstract solver type, while the other
lines declare the operations available on it. The init predicate creates a fresh
variable of the solver type; eq, <, and ≤ each tell the solver to impose the
constraint they stand for; and order asks for a total order consistent with the
partial order required by the constraints imposed so far, using the supplied order
as a preference to break any ties.

The implementation section of the solver module defines some auxiliary types
(vertex is a type synonym for integers, and constraint is a type with data con-
structors, lt for less-than constraints and le for less-than-or-equal-to constraints),
and then gives the actual definition of the solver type as follows:

:- type vertex == int.
:- type constraint −→ lt(vertex, vertex) ; le(vertex, vertex).

:- solver type po vertex where
representation is vertex,
equality is eq,
initialisation is init,
constraint store is

[ mutable(counter, int, 0),
mutable(constraints, set(constraint), empty set) ].

The following subsections explain the various parts of this declaration.

4.2 The External and Internal Views of Solver Types

A solver type presents the “external” view of a constrained variable, which is
the only view available to its users. Every solver type also has an underlying
representation type, which presents the “internal” view visible only to the solver
implementation. This representation type is specified by the representation is
vertex part of the declaration.

In our example, a constrained variable of solver type po vertex is represented
by a variable of type vertex, which is just a synonym for integer. These two
types are semantically quite different. Equating two values of type vertex simply
requires testing whether two integers are the same, while equating two values of
type po vertex requires adding a new eq constraint to the store and testing its
consistency. For instance, let V1 and V2 be two currently unconstrained variables
of type po vertex with internal representations 42 and 69, respectively. While V1

= V2 should succeed, constraining the two solver variables to behave identically
with respect to all other solver operations, 42 = 69 should fail.

We can distinguish between these two kinds of equality thanks to Mercury’s
support for user-defined equality. The “equality is eq” part of the declaration
indicates to Mercury that equality for values of solver type po vertex is defined
by the eq predicate, rather than by the default structural equality relation. (The
Mercury compiler and runtime system together implement the unification V1 =
V2 in the previous paragraph by calling eq(V1, V2).) Values of the internal type
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vertex, on the other hand, will use the standard equality definition for integers.
This separation into two types allows solver writers to ensure the referential
transparency of exported predicates and functions, something that must be done
by any declarative language with true programmer defined equality. 1

Separating the external, solver type from the internal, representation type
also allows their treatment to differ in other respects, such as making just one
of them an instance of a type class, or providing different implementations for
the methods of a type class. For example, consider an overloaded predicate show
for pretty-printing. Applying show to a vertex should simply print an integer
(since a vertex is an integer), but showing a po vertex could, for instance, list the
constraints on the vertex.

4.3 Converting Between Internal and External Views

We need to provide ways of moving from the external type with its external instan-
tiation state (old) to the internal type with its internal instantiation state (usually
ground, but see section 4.6), and vice versa. The solver type declaration allows the
Mercury compiler to automatically create the two casting functions required by
the solver writer to do this. For our running example, these functions are:

:- impure func from old po vertex(po vertex::oo) = (vertex::out).
:- impure func to old po vertex(vertex::in) = (po vertex::no).

where from old po vertex takes an old po vertex value and returns its internal
ground vertex representation, while the dual function to old po vertex takes a
ground vertex value and returns the corresponding old po vertex. Note that by
default, internal representations are ground values. This can be overridden in the
solver type declaration if, for example, the internal representation is defined in
terms of another solver type.

The casting functions are impure because a semantically non-ground value of
the external type may be (and typically is) represented by a ground value of the
internal type. No declarative reading can be given to such a relationship. While the
value of the external type may be further constrained, this does not affect the al-
ready groundvalue of the internal type. In the internal view, this is usually reflected
only in the constraint store, which is not an argument to the casting functions.

Operationally, cast functions are just the identity function. Calls to these
functions are guaranteed to be optimized away, and thus have no performance
cost. They exist only to bridge the “semantic gap” between a solver type and
its internal representation.

4.4 The Constraint Store

The value of a solver variable cannot be understood in isolation from the con-
straint store of its solver. The
1 Languages like Haskell sidestep the same problem by treating the (possibly user-

defined) equality relation == as having no relation to the equality = used for refer-
ential transparency. This is not possible in a relational language due to the pervasive,
implicit use of equality.
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constraint store is
[ mutable(counter, int, 0),
mutable(constraints, set(constraint), empty set) ].

part of the declaration indicates that the constraint store for the po vertex type
is stored in two mutable global variables, one containing the id of the next vertex
to be allocated (each new vertex is given a different integer identifier), the other
containing the set of constraints in the store. In this case, the store may contain
only lt and le constraints (this example represents equality constraints as a pair of
le constraints). Initially no vertexes have been created and the set of constraints
is empty. More complex solvers would have more sophisticated data structures.

The Mercury compiler automatically creates two access predicates for each
mutable variable, which in this case will have the signatures

:- semipure pred get counter(int::out) is det.
:- impure pred set counter(int::in) is det.
:- semipure pred get constraints(set(constraint)::out) is det.
:- impure pred set constraints(set(constraint)::in) is det.

Exported solver predicates start by reading (parts of) the store from these global
variables and finish by updating them, if necessary. Updates to the global vari-
ables are trailed to ensure they are automatically undone on backtracking.

4.5 Solver Operations

The functionality of the solver derives from the functions and predicates that it
exports. In practice, this is where the bulk of the solver code lies. This code uses
predicates and functions created by the compiler from solver type declarations
to map the external types and instantiations to internal ones and vice versa,
and to lookup and modify information in the global solver state. For example,
the less-than-or-equal-to constraint listed in the solver type interface might be
defined as in figure 1.

If there is an existing path from X to Y in the constraint graph, then the
constraint X ≤ Y is already entailed and we return. (The path predicate looks for

A ≤ B :-
promise pure(

impure X = from old po vertex(A),
impure Y = from old po vertex(B),
semipure get constraints(Arcs0),
( if path(X, Y, Arcs0, )
then true
else not path(Y, X, Arcs0, strict),

Arcs = set.insert(Arcs0 , le(X, Y)),
impure set constraints(Arcs)

)
).

Fig. 1. The code of the predicate that adds a less-than constraint
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acyclic paths in Arcs0, and tracks whether the path traverses a strict constraint
or not.) Otherwise, if there is an existing strict path from Y to X (implying Y
< X), then we fail, since the constraint X ≤ Y is inconsistent with the current
constraint graph. Otherwise we add le(X, Y) to the constraint graph and update
the global constraint store.

4.6 Hybrid Solvers

It is also possible to define a new solver type in terms of other solver types.
Figure 2 shows how a lexicographically ordered solver type could be defined in
terms of the po vertex solver (this example is purely illustrative: in practice a
user of the po vertex type would just use a pair of po vertexes directly rather
than hiding the representation behind another solver type). The solver type
declaration contains an extra attribute, any is bound(lex rep(old, old)), which
specifies that the instantiation state of the representation type that corresponds
to the inst old of the external type is not ground, but rather the function symbol
lex rep wrapped around two old values.

:- solver type lex where
representation is lex rep,
any is bound(lex rep(old, old)),
equality is eq lex,
initialisation is init lex.

:- type lex rep −→ lex rep(po vertex, po vertex).

:- pred init lex(lex::no) is det.
init lex(A) :-

promise pure(
init(A1), init(A2), impure A = to old lex(lex rep(A1, A2))

).

:- pred eq lex(lex::oo, lex::oo) is semidet.
eq lex(A, B) :-

promise pure(
impure lex rep(A1, A2) = from old lex(A),
impure lex rep(B1, B2) = from old lex(B),
A1 = B1, A2 = B2

).

:- pred ’≤’(lex::oo, lex::oo) is nondet.
A ≤ B :-

promise pure(
impure lex rep(A1, A2) = from old lex(A),
impure lex rep(B1, B2) = from old lex(B),
( A1 < B1 ; A1 = B1, A2 ≤ B2 )

).

Fig. 2. Defining a solver type in terms of another solver type
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5 Related Work

Mercury’s focus on purity while not neglecting efficiency (quite the contrary!)
leaves very few directly competing logic programming languages. The closest
relative is HAL [3], which itself used Mercury as an implementation language.
The vast bulk of other logic programming systems supporting the implemen-
tation of constraint solvers can reasonably be described as Prolog extensions
(e.g. [1, 5, 7, 11]). Oz [10] supports constraint programming, but any new con-
straint solvers have be written in a foreign language (C++).

5.1 Prolog-Based Systems

Key characteristics of Prolog-based systems are a dynamic type system, no mode
checking, support for aliasing of all variables, and dependence on impure lan-
guage features while lacking any mechanism for distinguishing pure code from
impure code. The lack of a static type system means that program variables all
have the same “universal type”. Even in systems with optional type declarations,
such as CIAO [7], the compiler cannot optimize the representation of a term to its
type without breaking the assumptions of e.g. the debugger and the garbage col-
lector. The compiler therefore cannot optimize the representation of solver types
either. Because the absence of a mode system allows variables to become aliased
before they become ground, every variable must be initialised before use. It also
means that every time the system wants to look up the value of a variable, it
needs to be prepared to follow a chain of aliasing pointers first. These character-
istics make it very difficult to build fast Prolog systems (e.g. implementors must
write program analyses if they wants to optimize away dereferencing). Prolog
systems that have been extended to support constraint programming typically
use attributed variables [8] to associate solvers with variables. This complicates
the representation of variables even further, and makes unification more complex
and expensive due to the need to check at many steps whether any attributed
solver goals have to be invoked. However, the biggest drawback of building con-
straints on top of attributed variables is that code built that way has no clear,
well-defined boundary between the pure external view and the internal impure
view, which makes programs harder to maintain and to optimize.

The Mercury compiler, by contrast, knows the type of every variable, and each
type has a separately optimized low-level representation. Thanks to the mode sys-
tem, the Mercury compiler also knows at each point whether a given variable is
new, old, or ground. Consequently, new variables may contain just junk data, and
do not require any kind of initialization. Only solver type variables need to be
initialized, at the point where their instantiation state changes from new to old
(or to ground). Because new Mercury variables cannot be aliased (Mercury uses
code reordering to ensure that at least one side of a unification is old or ground
before the unification is carried out), variables do not need to be dereferenced. A
particular solver might use aliasing as part of its implementation of equality, but
that is an implementation decision made by the solver programmer and can have
no effect on the performance of variables with other types, which have separate
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representations. For example, a Herbrand solver type for terms with Prolog-style
unification could use a WAM-style [13] representation, where variables may be
aliased and would therefore need dereferencing. On the other hand, a solver type
interfacing to a SAT solver might unify variables by simply adding clauses equat-
ing the two variables to its constraint store. Similarly, because solver variables are
handled exclusively by solver implementations, solvers can immediately inspect
their variables’ values. There is no need for a general attribute variable mecha-
nism, and thus no overhead is incurred by non-solver types.

Mercury also gets additional speed from the Mercury compiler’s ability to op-
timize away some computations and to reorder some others (e.g. to make failure
happen earlier). The Mercury compiler is allowed to exercise this ability only on
pure code; removing or reordering impure code could change the program’s out-
put. Mercury programmers often write clear, maintainable code, even if it is inef-
ficient, if they know the compiler can eliminate the inefficiency. Our solver type
design allows and indeed encourages solver writers to keep both solver interfaces
and the codes of the solvers themselves as pure as possible, and requires them to
cleanly separate out the impure code. This preserves maximum freedom for the
compiler and allows programmers to maintain a declarative programming style.
This has genuine advantages for both compiler implementors (optimizations are
easier to implement) and constraint programmers (declarative code is more main-
tainable). These are real advantages not available with Prolog-based approaches.

5.2 HAL

Like Mercury, HAL also has external and internal views of solver types. But
rather than making these genuinely distinct types, the external view is a specially
handled renaming of the solver type representation. Outside the solver module,
a HAL solver type is an abstract type whose values typically have instantiation
state old and whose equality is defined by a programmer specified predicate in
the solver module. Inside the solver module, the solver type is a concrete type,
values of that type have a different instantiation state (usually ground), and
the applicable equality semantics is structural equality rather than the equality
predicate used for the external view.

The first problem with this approach is that referential transparency is much
more complicated for solver types, since what equality means for such terms
is different depending upon whether a unification occurs inside or outside the
solver module. This means for example that code performing such unifications
must not be subject to intermodule optimizations such as inlining. The second
is that the solver type module cannot define predicates in terms of the external
view. For example, in the Mercury po vertex solver module the programmer can
define equality of po vertexes in terms of ≤ for po vertexes:

eq(A, B) :- A ≤ B, B ≤ A.

In a HAL solver module, however, A and B would be viewed as integers (the
representation view), hence the integer version of ≤ would be used instead of the
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po vertex version, which has quite different properties! To see the third problem,
consider a showable class the debugger may use to print values. We would like
different things printed in the internal and the external views, but with the HAL
approach, this is not possible, since there is only one type.

The Mercury approach avoids these problems by making the external and
internal views distinct types and requiring the programmer to explicitly cast
between them. We feel the modest amount of extra typing required is more than
compensated for by the increased flexibility, clarity, and protection from errors.

6 Experimental Evaluation

The results presented here are solely presented to illustrate that the Mercury ap-
proach can be used to implement competitive solvers. The benchmark programs
for each language are as similar as possible, although the solver type implemen-
tations are obviously different in each case. It is important to bear in mind that
the performance of a given solver is determined much more by how it is imple-
mented than in what language: the better algorithm will usually win! Using the
exact same algorithm on all systems usually isn’t feasible, and even when it is,
a given algorithm may be a better fit for one system than for another. This is
why despite our best efforts, the benchmarks here are far from being apples-to-
apples comparisons. That said, it seems clear that Mercury is generally faster
than HAL and Eclipse.

Table 1. Benchmark results

Problem Size Reps Mercury HAL Eclipse

serialize 10,000 2,000 63.5 98.9 (1.56) 164.9 (2.60)
7,500 3,000 68.4 96.5 (1.41) 180.1 (2.63)
5,000 4,000 58.8 69.0 (1.17) 152.6 (2.60)

warplan 100 8.8 8.2 (0.93) 12.0 (1.36)
hanoi 10 20,000 15.2 17.3 (1.14) 31.7 (2.09)

13 2,000 12.5 18.6 (1.48) 25.5 (2.04)
16 200 10.8 18.5 (1.72) 31.9 (2.95)

qsort 10,000 200 45.9 55.4 (1.21) 221.5 (4.83)
7,500 400 52.5 63.2 (1.21) 241.2 (4.59)
5,000 800 48.7 58.4 (1.20) 204.9 (4.21)

laplace 10 6,000 28.1 32.2 (1.15) 72.7 (2.59)
20 400 20.0 32.7 (1.64) 47.8 (2.39)
30 50 15.9 33.3 (2.01) 37.7 (2.37)

matmul 10 2,000 12.2 37.4 (3.07) 60.9 (4.99)
20 200 14.8 33.5 (2.26) 52.1 (3.52)
30 40 14.3 38.3 (2.68) 42.6 (2.98)

mortgage 1,000 26.9 19.4 (0.72) 1140.0 (42.0)
fib 12 1,000 104.9 100.1 (0.95) 1667.3 (15.9)



132 R. Becket et al.

These benchmarks were run on a PC with dual 933MHz Pentium III CPUs
and 2 GBytes of RAM running Linux kernel version 2.4.3. All times are given in
seconds and performance relative to Mercury is also given in parentheses for all
other benchmark times. The compiler versions used were Mercury rotd-2005-08-
21, the last development release of the HAL compiler (work on HAL ceased in
2004), and Eclipse 5.8. The CPLEX benchmarks were linked against CPLEX 7.0.

Table 1 gives the results. serialize, warplan, hanoi, and qsort are standard Pro-
log benchmarks to test performance on Herbrand constraints, i.e. Prolog-style
unification. HAL’s superior performance on warplan, the most challenging of this
group of benchmarks, reflects the considerable effort expended by the HAL team
on efficient Herbrand types.

laplace, matmul, fib, and mortgage test solver interfaces to CPLEX [2], an off-
the-shelf linear constraint optimizer. laplace computes a matrix using Laplace’s
equation. matmul inverts a matrix of prime numbers by multiplying it with
a matrix of variables and equating the result with the unit matrix. mortgage
computes mortgage costs on a $120,000 dollar loan over 120 years at 1% interest
and then runs the same computation backwards. fib takes a naive approach to
computing Fibonacci numbers in the forward direction. In laplace and matmul,
constraints are “batched” together and solved once at the end of the query. In
mortgage and fib, constraints are incrementally checked for consistency because
they control recursive loops. We believe HAL’s superior performance on these
two benchmarks is due simply to the fact we haven’t had as much time to
optimize this part of Mercury’s interface to CPLEX.

7 Conclusions

We have extended Mercury with the instantiation old and solver types. When
we began this work, we thought supporting solver types would be a straightfor-
ward and relatively uninteresting design problem. In the end it required several
attempts and a great deal of careful thought to arrive at a clean design that
could be implemented efficiently without sacrificing referential transparency.

So far, we have used these new Mercury features to implement a Herbrand
solver, a propagation based finite domain solver, and a BDD-based set solver,
as well as interfaces to CPLEX and SATZ (a SAT solver). We have found the
solver type mechanisms to be easy to use, and in each case, the interface of the
solver seen by its users is totally pure, with the exception of ask predicates.

We have evaluated the performance of some of the above solvers against com-
parable solvers in other languages. The results are very encouraging: in the
benchmarks we have run, Mercury is the fastest system in almost all cases.

The system we have described is now available in releases-of-the-day from the
Mercury web site. The full source code of our running example is also available
from there, next to this paper on the papers page.

We would like to thank Fergus Henderson for many useful discussions, and
NICTA and the Australian Research Council for their support.
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4. G.J. Duck, M. Garćıa de la Banda, and P.J. Stuckey. Compiling ask constraints.
In B. Demoen and V. Lifschitz, editors, Proceedings of the 20th International Con-
ference on Logic Programming, LNCS, pages 105–119. Springer-Verlag, 2004.

5. ECLiPSe. http://www.icparc.ic.ac.uk/eclipse/.
6. F. Henderson, T. Conway, Z. Somogyi, D. Jeffery, P. Schachte, S. Taylor, and

C. Speirs. The Mercury language reference manual. Available from http://www.
cs.mu.oz.au/mercury/, 2000.

7. M. Hermenegildo, F. Bueno, D. Cabeza, M. Garcia de la Banda, P. López, and
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Abstract. Many scientific applications benefit from simulation. How-
ever, programming languages used in simulation, such as C++ or Matlab,
approach problems from a deterministic procedural view, which seems to
differ, in general, from many scientists’ mental representation. We apply
a domain-specific language for probabilistic programming to the biolog-
ical field of gene modeling, showing how the mental-model gap may be
bridged. Our system assisted biologists in developing a model for genome
evolution by separating the concerns of model and simulation and pro-
viding implicit probabilistic non-determinism.

Keywords: Functional Programming, Probabilistic Programming,
Haskell, Genome Evolution.

1 Introduction

A primary occupation of scientists is to devise models of observable processes.
These models may be formal and mathematical, or informal ideas and sketches.
In general, such models cannot be executed, simulated nor verified directly. In-
stead, scientists have had to translate their model first into a programming
language. Traditionally, simulations for scientific models were written in the
programming language of their day, such as Fortran or C. Later simulations
were also written in mathematical packages such at MatLab. Recently, some re-
searchers have developed domain-specific modeling tools for biological processes
[9,11,15,4,3].

Many of these approaches, however, are merely speculation and have not been
used in an actual research application. In addition, many of them are limited to
only the particular given model, and so general computation cannot be mixed
with the scientific specification. For example, the bio-ambients approach requires
any model to be given in terms of a hierarchical chain of interacting objects
[15]. On the other hand, some approaches are too general, forcing scientists to
adapt their ideas to fit the general-purpose constructs given by the system. For
example, the pathway logic system presents a general algebraic rewrite approach
without specific support for constructs that may appear in biological systems [4].

We approach the problem driven by a specific application: In conjunction
with the Center for Gene Research at Oregon State University, we have devel-
oped a model for the evolution of microRNAs [2,1], which has enabled scientists
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to predict what types of genome sequences are most likely to exhibit active
microRNAs. This result is important since microRNAs are an essential regula-
tory mechanism for controlling gene expressiveness. The model is realized with
the help of a domain-specific embedded language (DSEL) for probabilistic pro-
gramming [5]. This paper reports on our process as well as results applicable to
modeling a wide variety of scientific domains.

We have chosen a DSEL approach because it yields a language that offers
constructs general enough to represent any computation, but specific enough
to be very closely related to the model. We found that the scientists did not
know at the outset all the precise details of the model they wanted to represent.
Therefore, choosing a DSEL approach allowed rapid prototyping and iteration
as we developed the model from the ground up. We constructed the DSEL in
Haskell because it offered a number of unique features that allowed “behind-
the-scenes” operation (through monads), allowing the written code to closely
resemble the biological concepts.

The remainder of this paper is structured as follows. We introduce our ap-
proach to probabilistic functional programming in Section 2. In Section 3 we
will show how this approach can be applied to a simple biological problem, the
Lotka-Volterra predator-prey model. In Section 4 we will discuss the motivation,
problem, and prototyping of the genome model. The final model and its scientific
accomplishments will be presented in Section 5. A discussion of related work is
given in Section 6. Conclusions are presented in Section 7.

2 Probabilistic Functional Programming

We have constructed a probabilistic functional programming (PFP) library [5,13]
based on a DSEL approach. The foundational structure of probabilistic comput-
ing is a list of values and their associated probabilities, called a distribution,
which is encapsulated in the type:

Dist a

The users of the library do not directly construct such distributions—instead,
we provide a variety of functions which construct and operate on them. For
example, the functions uniform and normal construct a distribution from a list
of values. These distributions are of course discrete, so they can be considered
as approximations.

We can extract probabilities from the distribution using predicates on values
in the distribution, called events. The function ?? takes such a predicate and
determines the probability (represented by a float value) that it is true in a
given distribution.

type Event a = a -> Bool

(??) :: Event a -> Dist a -> Probability
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We can consider a simple example of rolling dice. A regular die has a numeric
value from one to six, and may land on any of those values with equal probability.

type Die = Int

die :: Dist Die
die = uniform [1..6]

We can simulate rolling an arbitrary number of dice by the following function
dice. The function joinWith combines all pairs of values from two distributions
with a given function while multiplying their probabilities. In this case, we are
accumulating individual die rolls in a list. The function certainly constructs a
distribution that consists of one value with 100% probability.

dice :: Int -> Dist [Die]
dice 0 = certainly []
dice n = joinWith (:) die (dice (n-1))

Now what if we wanted to determine how likely it would be that out of a certain
number of rolls, a certain number of them would come up six? Since we are
producing a list, we can simply filter out all non-six values and count how long
the remaining list is.

sixes :: (Int -> Bool) -> Int -> Probability
sixes p n = (p . length . filter (==6)) ?? dice n

If we wanted to determine the probability of rolling more than two sixes in a
sequence of four die rolls, we could query:

> sixes (>2) 4
1.6%

In many cases, distributions are not given directly. Instead, a series of steps
are required for their construction, each one taking a value and producing a
distribution. We call such a function a transition.

type Trans a = a -> Dist a

With transitions, distributions permit a sequenced form of computation known
as a monad. In the probability monad, the function return indicates that a given
value is certain. The bind operation >>= takes a distribution and a transition,
threads the values in the first distribution through the transition and combines
the resultant distributions. The observation that probability distributions form
a monad is not new [6]. However, previous work was mainly concerned with ex-
tending languages by offering probabilistic expressions as primitives and defining
suitable semantics [7,10,14,12].

Consider the case where we take a sum, roll a die and add its value to the sum.
We may wish to repeat this process several times. We can employ a transition
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which takes the current sum s and adds each possible die roll d ∈ die to the
sum, which is expressed using the bind operation s follows.

die >>= (\d->return (s+d))

Using Haskell’s do notation, this expression can be rewritten in a more readable
way.

addDie :: Trans Int
addDie s = do d <- die

return (s+d)

The statement d <- die can be thought of as universal quantification on the
values in the distribution die.

In many cases, we want to repeat some transition multiple times. We create a
constructor class Iterate for repeating various kinds of transitions, represented
by the type constructor c.

class Iterate c where
(*.) :: Int -> (a -> c a) -> (a -> c a)
while :: (a -> Bool) -> (a -> c a) -> (a -> c a)

In addition to iteration over distributions, we also iterate over randomized val-
ues. These are used to avoid monotonically increasing space usage (and thus,
running out of memory) that can happen iterating with full distributions. For
example, consider adding the value of n dice. At each step, the number of possible
outcomes grows. All of these distributions will be combined and threaded again
through the transition. In order to avoid space expansion, we provide random
selection from distributions. In randomization, a distribution is created and one
value selected at random based on the probabilities. A randomized transition
is called an RChange, which takes a value and produces one randomized value.
Random numbers are computed in the IO monad, for which we have created the
synonym R.

type RChange a = a -> R a

Since an RChange produces only one value, we can thread the value through as
many steps as we want and never worry about combinatorial explosion. Random-
ized values may be used in monads with the same syntax as distributions, but
instead of being a universal quantification, it is a single selection: an existential
quantification. We also provide the ability to construct randomized distributions
by repeatedly sampling a particular randomized change. A randomized distri-
bution (RDist) is some collection of values and probabilities that represents
an approximation of the actual distribution. This is known as a Monte Carlo
sampling. An randomized transition (RTrans) is a function that, given a value,
produces such an approximation.

type RDist a = R (Dist a)
type RTrans a = a -> RDist a



138 M. Erwig and S. Kollmansberger

Continuing the dice example, we can establish iteration functions for rolling and
summing the value of dice. The function dieSum rolls one hundred dice and
adds them all together. The function rDieSum does the same, but uses random-
ization to only take ten walks through the space. The function ~*. provides
randomization of a transition and repeated walks to accumulate a randomized
distribution.

dieSum = 100 *. addDie
rDieSum = (500,100) ~*. addDie

The randomized version offers considerable time and space savings. We can ad-
just the number of walks to spend more time gathering a better approximation,
or to more quickly make a rough estimate. On the other hand, for a large number
of steps, it is often impossible to run a full simulation.

The usual idea of iteration is to process a value repeatedly and return some
final value. However, in some simulations we want to observe the evolution of a
distribution over time. Since each step in an iteration produces an intermediate
distribution, we can simply retain these distributions in a list rather than discard
them. In general, a trace over any type of value can be represented as a list of
that type. We call a trace of distributions a Space. This can be imagined as a
three dimensional plane showing a slightly different distribution at each z value.

type Space a = [Dist a]

3 Probabilistic Modeling in Biology

The Lotka-Volterra predator-prey model [8] states that the population of preda-
tors and of prey can be described with mutually dependent equations. In par-
ticular, given the victims’ growth factor (g), the predators’ death factor (d), the
search rate (s), and the energetic efficiency, (e), along with the current victim
(v) and predator (p) population, a new population count can be determined with
the equations g ∗ v − s ∗ v ∗ p (for victims) and d ∗ p + e ∗ v ∗ p (for predators).
These new populations can then be rethreaded as input to create a simulation
over time.

Consider the case when the growth and death rate are not a known constant,
but exist within some probability distribution. We can define them, for example,
using a normal curve.

growth = normal [1.01, 1.02 .. 1.10]
death = normal [0.93, 0.94 .. 0.97]
(s,e) = (0.01,0.01)

The data that we are simulating is the population of victims and predators. We
can represent the population as a tuple of floats.

type Pop = (Float,Float)
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Recall that we previously stated that distributions could be thought of as a
monad. Monadic sequencing is very helpful in this case. We can create a transi-
tion which, given a Pop, produces a distribution of Pop based on the four distri-
butions given above. The equations can be presented in the usual way, letting
the monad do the heavy lifting of extracting values and combining probabilities.

In the transition dvp, all values are extracted by the monad from the distribu-
tions growth and death, and are then threaded through the equation, which is
then recombined into a distribution of new values. In other words, this transition
takes a current population and determines all possible new population values,
and their probabilities.

dvp :: Trans Pop
dvp (v,p) = do g <- growth

d <- death
return (g*v - s*v*p ‘max‘ 0, d*p + e*v*p)

With an initial seed value, such as (v0,p0) = (15,15), we can now simulate
the predator-prey model. However, if we tried this, we would quickly find that
this is a case of strong combinatorial explosive, and we would be unable to sim-
ulate more than a handful of steps! The solution is to introduce randomization.
This does not require any change to our transition, nor any modification of the
equation. We simply use a function to perform 1000 randomized simulations
(iteration of a randomized change) to produce a randomized distribution.

ppt n = ((1000,n) ~.. dvp) (v0,p0)

Of course, having the output come as a long list of values and probabilities is
neither very interesting nor very useful. Therefore, we have developed a visual-
ization module that presents information in a graph form.

We would like to visualize the generations (steps) on the X axis and the
population count on the Y axis. In order to transform a distribution of population
into a single value to plot we use the expected function which computes the
expected value of a numeric distribution.

We can devise a function which operates on a randomized space to apply
the expected function. First, the list of distributions must be extracted from
the monad, then for each element in each distribution, either the first or the
second element from the tuple (representing predator or prey) must be extracted,
which is done by mapping a function f across all elements of each distribution.
The expected function can be applied to each distribution in the space. The
application of reverse is needed since traces are accumulated from the most
recent value to the oldest value, but we want to plot the oldest value first.

getRE f rs = do rs’ <- rs
let rs’’ = map (fmap f) rs’
return (reverse (map expected rs’’))

Finally, we can produce a chart with two lines: one for the predator and one for
the prey. Note that the function plotRL takes a randomized list and turns it



140 M. Erwig and S. Kollmansberger

into a line on the graph. This list comes from calculating the expected value of
each distribution in the randomized space.

fig1 = figP figure{title="Predator/Prey Simulation ",
xLabel="Time (generation)",
yLabel="Population"}

[(plotRL v’){color=Green,label="Victim"},
(plotRL p’){color=Red,label="Predator"}]

where p = ppt 500
v’ = getRE fst p
p’ = getRE snd p

The plot created by this function is shown in Figure 1 on the left.
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Fig. 1. Probabilistic (on the left) and deterministic (on the right) predator/prey sim-
ulation over 500 generations

Compared with the corresponding deterministic model with growth = 1.055
and death = 1.95 (shown in Figure 1 on the right), the probabilistic model
demonstrates a quantitatively different behavior in how the peaks develop, sug-
gesting that using probabilities in modeling has more effect than simply attempt-
ing to average the values and retain a deterministic approach. This conclusion is
verified by Renshaw [16], who notes that stochastic predator-prey models almost
always experience extinction after several generations.

4 Model Prototyping

In this section, we report on the gradual development of the genome model
through iterations over several prototypes, followed by evaluations and discus-
sions with biologists.



Modeling Genome Evolution with a DSEL for Probabilistic Programming 141

The most significant challenge we faced when developing this model was sim-
ply that the problem was not well defined; that is, the biologists did not know
exactly what the model needed to represent. Thus, we have employed a method
for rapid prototyping so that the model could evolve easily over time, which
was essential to the project’s success—the feedback and results from each step
helped inform the biologists as to which direction would be most profitable to
take. We conclude from our experience that any domain-specific language aimed
at biologists, or scientists in general, should support rapid prototyping.

Biologists have determined that over generational time genomes experience
evolutionary development. Part of this development includes parts of the genome
being duplicated, and occasionally an inverted duplication. The duplications and
inverted duplications can interact in some instances through microRNAs. Mi-
croRNAs are transcribed from inverted duplications and can attach to duplicated
genes to inhibit their expressiveness. In other words, when a duplication and in-
verted duplication are interacting, the genetic function of that duplication is
suppressed. An important biological question is under what circumstances these
microRNAs can develop.

To this end we had to model a genome that accumulates changes over time.
The genome consists of multiple genes, which are either capable of interaction
with inverted duplications or not, depending on the number of changes accu-
mulated. The biologists felt that modeling various duplications of a single gene
was sufficient. Therefore, the only information we need about each duplication
(gene) is the number of changes it has accumulated. Our goal was to simulate
how long any gene of the genome would remain in the state of interaction given
a variety of initial conditions, such as varying rate of changes for different parts
of the genome and different numbers of genes.

We started by constructing the genome as a list of duplications (also simply
called genes) and inverted duplications. Duplications were simply represented as
integers since the number of accumulated changes was the only information that
mattered for this application. Inverted duplications had three significant parts
that could accumulate changes, so we represented them with a three-tuple of
integers. These three parts arise from the fact that an inverted duplication is
strand of RNA folded onto itself. This can be viewed as two strands (sense and
anti-sense) and a loop.

We then allowed a change to occur either in one of the parts of the inverted
duplication or in one of the duplications. After discussing the model further, the
biologists decided the inverted duplication needed only two components: a sense
and an anti-sense. The loop was found to be non-significant. Since we were using
high-level operations to express the model, the change was trivial.

Next, the biologists decided that merely having one inverted duplication was
sufficient. Each duplication would then be compared against the inverted du-
plication to determine interaction. At this point, interaction was still a fuzzy
concept, so we tried to clarify it into mathematical terms.

The biologists told us that, in the beginning, all the genes could interact with
an inverted duplication. They called this state “full” interaction. Over evolu-
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tionary time, changes accumulate. If, for any duplication, the number of changes
in that duplication plus the number of changes in the anti-sense of the inverted
duplication were five or more, that duplication stopped interacting with the in-
verted duplication. In other words, the genetic function of that duplication could
no longer be suppressed by a microRNA. If some duplications were interacting,
the state was “partial”. If none were interacting, the state was “none”. In addi-
tion, if enough changes accumulated in the inverted duplication alone (a total of
five between the sense and the anti-sense), then the inverted duplication was con-
sidered lost, and all interaction stopped. This behavior is directly implemented
with the function interaction.

interaction :: Genome -> Interaction
interaction ((s,a),gs) | s+a>5 = Loss

| True = if l==0 then None else
if l==g then Full else Partial

where l=length ((filter (\n->a+n<=4)) gs)
g=length gs

It soon became apparent that this abstraction was not sufficiently detailed. The
biologists told us that each gene actually needed to be divided into units. This
meant that each duplication was now a list of n integers, each a place where
changes could accumulate. We represented the inverted duplication as a list of
n pairs (sense and anti-sense).

The additional complexity made the ideas of interaction and loss more in-
teresting, as we had to match units in the genes with the units in the inverted
duplication. We had to check each unit in a duplication against the correspond-
ing anti-sense unit in the inverted duplication. If any had a sum of less than five
changes, the duplication was still considered to interact. This concept is shown
in Figure 2.

Fig. 2. The test of interaction

We made several additional changes before arriving at the final model, dis-
cussed in the next section, which the biologists found useful for generating pre-
dictions which they could test experimentally.
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5 A Model of Genome Evolution

Our simulation finally ended up with a genome consisting of Dups and one in-
verted duplication IDup. In addition to a given number of Dups, we also had a
given number of Units. Each gene was broken into that many units, and the
sense and anti-sense of the inverted duplication also had that many units. We
represented the inverted duplication with a list of Bins, where a Bin is simply a
pair of units.

type Unit = Int
type Bin = (Unit,Unit)

type Dup = [Unit]
type IDup = [Bin]
type Genome = (IDup,[Dup])

Initially, a change could randomly occur anywhere in any unit with equal prob-
ability. However, to model evolutionary pressure, we constructed several models
which defined varying degrees of resilience for the gene parts. In particular, we
used a “variable model” which allowed the genes to receive all the changes that
fell on them, and a “family model” which allowed only one third of the changes
to the duplications to accumulate. The names “variable” and “family” derive
from the biologists’ labels of different classes of genes, in particular, experiments
which showed that some genes were essential to the functioning of an organism
(thus were resistant to change) while others could change freely. The “family
model” represents those genes which are resistant to change, while the “variable
model” represents those which can freely change.

A model is a function which takes the number of genes in a genome and
creates a probabilistic function which selects to accumulate a change in either
the genes or the inverted duplication based on the number of genes.

type Model = Int -> Trans Genome

In the function mkModel to create a model, enumTT creates a distribution of
transitions. Given the number of genes, x, and that there are 2 parts to the
inverted duplication (sense and anti-sense), we make all units equally likely to
experience a change. The function transAt performs a transition on a pair. The
parameters 2 and 1 indicate which part of the pair should have the transition
applied. Since genes are the second item in the pair, the gene transition performs
the identity transition on the inverted duplication and a change on the genes,
while for the inverted duplication we perform a correspondingly defined change
and the identity transition on the genes. The definition for genes considers the
probability given in gp, representing a family (gp = 1

3 ) or variable (gp = 1)
model, to determine whether to accept the change or ignore it.

At first glance, a simple uniform function would seem sufficient. However,
since the genes and the idup contain an inequal number of accumulators, sim-
ply applying uniform would not give each accumulator an equal chance of being
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selected. Instead, we consider how many accumulators are present in each. The
genome contains n genes, each with u units (accumulators). The inverted dupli-
cation contains u bins, each with two units. Thus, if x is the number of genes,
then the total number of units is proportional to 2 + x (the two being from the
inverted duplication) while the number of units in the genes is proportional to
x. Thus, the probability of selecting a unit from the genes is x

2+x .
The functions chgGenes and chgIDup apply one change to either a list of

duplications or a list of bins (an inverted duplication), respectively. The location
of the change is a uniform distribution over all possible sites.

mkModel :: Float -> Model
mkModel gp v = enumTT [1-p,p] [genes,idup]

where genes = transAt idT (chgGenes gp) 2
idup = transAt chgIDup idT 1
x = fromIntegral v
p = x/(2+x)

A model that accepts all changes is defined by var and a model that accepts
only one-third of changes to the genes is defined by fam.

var :: Model
var = mkModel 1

fam :: Model
fam = mkModel (1/3)

The state of interaction is defined as a function on the genome. The possibilities
for interaction are Loss, None, Full and Partial.

data Interaction = Loss | None | Partial | Full

The state of Loss occurs when the pairs of the inverted duplication lined up
sequentially had no pattern where the sum of changes between one sense and
anti-sense was less than 11, the sum in the next less than 6, and the sum in the
next less than 11. In other words, we rolled a 10-5-10 upper bound across the
inverted duplication, and if no match was found, it was considered lost.

match x y z = x <= 10 && y <= 5 && z <= 10

The function defunct determines if an inverted duplication has been lost. This
function takes three sequential pairs from an inverted duplication. Each pair
(si,ai) consists of a sense si and anti-sense ai, which are represented as units
accumulating changes. If the sum of the changes in the first pair and the third
pair are less than or equal to 10, and the sum of the changes in the second
(middle) pair is less than or equal to 5, then the inverted duplication is not
defunct (not lost), so the function returns False. If the first three pairs do
not, however, match the 10-5-10 pattern, then function shifts one pair down the
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sequence and looks again. If the function reaches the end of the sequence of pairs,
and no sequence of three matching the pattern is found, the inverted duplication
is considered lost. Implicitly, this means that all simulation models must have
at least three units to be interesting.

defunct ((s1,a1):(s2,a2):(s3,a3):sx) |
match (s1+a1) (s2+a2) (s3+a3) = False

defunct (_:sa2:sa3:sa) = defunct (sa2:sa3:sa)
defunct _ = True

If the inverted duplication is not lost, we proceed to inspect each gene to see if it
interacts with the inverted duplication. Such interaction is determined by adding
the changes in each unit in the gene to the anti-sense unit in the associated pair
of the inverted duplication. If the sum is less than 5 for any unit, the gene is
considered to interact with the inverted duplication.

interact :: IDup -> Dup -> Bool
interact i d = any (<=4) $ zipWith (+) (map snd i) (drop n d)

where n = length d-length i

Gene interaction is tested for all genes, and the genome interaction state is
determined by comparing the number of genes which interact with the total
number of genes. If all genes interact, interaction is Full. If no genes interact,
interaction is None. If some genes interact, interaction is Partial.

In this case, we define interaction as a function from a genome to an interac-
tion state. The function interaction takes a Genome, which is a pair consisting
of an inverted duplication i and a sequence of genes gs. The function defunct
determines if the given inverted duplication is lost. If so, the interaction function
always returns Loss. Otherwise, the number of genes g is determined by comput-
ing the length of the list gs, along with the number of genes currently interacting
with the inverted duplication, which is determined by filtering the sequence of
genes to retain only those that interact, and then counting them. These two val-
ues are then used to determine the interaction state as None, Partial or Full
as described above.

interaction :: Genome -> Interaction
interaction (i,gs) | defunct i = Loss

| l==0 = None
| l==g = Full
| otherwise = Partial

where l=length (filter (interact i) gs)
g=length gs

For each simulation run, we start with a genome that consists of an inverted
duplication with no changes and a list of genes with no changes. We selected
one of these genes to be the founder gene and set it aside. The remaining genes
accumulated a given number of initial changes spread among them. The function
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g creates a Genome given an initial chance of changes c, the number of units per
gene u and the number of genes n. This function first constructs the inverted
duplication and genes with 0 changes. A list of n−1 of genes is constructed, which
has the requested changes randomly applied. The function chgGenes here is the
same as above; it applies one change per call to the given list of duplications.
The parameter 1 indicates that it should not discard any changes. The founder
gene, with no changes, is appended. This completes the creation of the genome.
Once the genome is created, the model transition can be applied iteratively to
produce a trace of the evolution.

g :: Float -> Int -> Int -> R Genome
g c u n = do gs’ <- (m *. (random $ chgGenes 1)) gs

return (zip f f,f:gs’)
where m = round (fromIntegral n*c)

f = list u 0
gs = list (n-1) f

Note the use of random to ensure that the change will produce a single random-
ized value rather than a distribution. This change is then iterated to select many
randomized values, thus producing a randomized distribution, approximating the
actual distribution.

We found that running a full simulation of the genome used tremendous
amounts of memory and time, so we opted for randomized simulations, allowing
the biologists to trade off between detail and time. In order to minimize memory
usage, we performed the aggregation of traces at the outermost level. This avoids
constructing a distribution during each simulation run, holding instead only a
single randomized genome which is built into a randomized trace.

Changes were applied using the model until the interaction entered the state
of Loss. Since these were randomized changes, we only accumulated an RTrace,
which we then put together over many runs to produce an RSpace. We then
analyzed each distribution to count how long the simulation stayed in partial
interaction, as this was the configuration the biologists found interesting.

sumDiff :: [Dist Interaction] -> Float
sumDiff ds = sum (map (prob2Float . ((==Partial) ??)) ds)

We can then simply divide by the number of runs in the space to find the average
time spent in interaction, which we can plot for varying models and number of
genes. An example of the results is shown in Figure 3.

MicroRNAs are significant in determining the function of genes. However,
it is not completely clear how about microRNAs have evolved—in particular,
biologists note that microRNAs are not present with equal likelihood in all genes.
Our model makes two concrete predictions about the presence of microRNAs:
First, microRNAs are more likely to be found in “variable” genomes rather than
“family” genomes, and second, as a probability per gene, microRNAs are more
likely to be found in organisms with smaller genomes. Preliminary experimental
results discussed in the forth-coming paper [1] supports both of these predictions.
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Fig. 3. Simulation results

6 Related Work

Work has been done on both probabilistic programming and modeling biological
systems.

A theoretical, set-oriented treatment of probabilistic computations is given in
[7]. The author points out that probabilistic computations can be considered in
a monadic domain.

A monadic probability implementation is demonstrated by [14]. The authors
show how probability distributions can be constructed using transitions similar
to our own. The transitions can be combined monadically and operators are
used to derive expected values and take samples. The authors also demonstrate
a formal stochastic lambda calculus for representing probabilistic computations.

A randomized probabilistic language is demonstrated by Park, et al. [12].
Their method is based on sampling from probabilities, which can then be com-
bined to form random results or probability distributions. Their method involves
repeated sampling of the probability space, whereas our method can concretely
represent this problem with deterministic probability distributions to find an
exact probabilistic result.

An early attempt to model biological systems was done by McAdams and
Shapiro [9]. The authors compared biological systems to electrical circuits noting
that, like electrical circuits, biological systems operate in parallel and switches
may describe activation or repression of either electricity or biological function.

Sato and Kameya [17] introduce a statistical logic learning language called
PRISM based on Prolog. This language is designed for modeling uncertainty at
a high level and can also infer parameters based on a set of given data.

A mathematical approach was taken by Nilsson and Fritzson with the Mod-
elica system [11]. Modelica is an equation-oriented programming environment,
which includes objects, allowing a direct modeling of biological components and
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the continuous mathematical models that direct their behavior. The authors also
allow the introduction of thresholds, which allow discrete events to be modeled
based on continuous value equations. A graphical environment exists, which
allows straightforward access by mathematically trained scientists to develop
Modelica models.

Regev et al. [15] introduce an abstraction method for representing biological
components as units of computation. They call these components ambients. An
ambient is an isolated computation environment which may contain, in a hier-
archical fashion, other ambients. The authors also describe complex, multi-level
models which include functions at the molecular, cellular, and anatomical level.
These situations are modeled by having a set of ambients for each level of detail,
and using the hierarchy to specify the range of influence. A language, BioSpi,
is briefly described which includes the concept of ambients and is designed for
systems biology simulations.

Eker et al. introduce a method they called “pathway logic” [4], which is an
algebraic approach that allows analysis of the abstractions. For example, the
authors point out that the equality of (x+y)∗(x−y) and x2−y2 could be checked
numerically for many possible values, but it can also be derived using a set of
algebraic rewrite rules, which could form a proof. The authors define a specific
set of rewrite rules involving proteins and cells and then show how analysis can
provide several possible classes of results: explicit simulation, determining what
constraints a given start state has on all future states (for example, if some
property P is true, do we always reach a state that satisfies property Q?) and
meta-analysis, which asks broadly which classes of starting states would satisfy
some final criteria, thus allowing model disambiguation using actual data.

Pathway Modeling Language (PML) is introduced by Chang and Sridharan
[3]. This language is based on the concept of binding sites—where two compo-
nents have a compatible connector and so bind, allowing some private interac-
tions and transformations, and then break apart with new connectors ready to
bind to other components. They also provide for compartmentalization of reac-
tions. This approach allows an event-oriented design where reactions happen as
all preconditions are met and binding occurs. In this way, the order of reactions
does not need to be explicitly specified.

7 Conclusions

High-level declarative languages, extended by suitable domain-specific abstrac-
tions, offer a great potential as executable modeling languages for scientists,
because they support the incremental development of scientific models that can
be instantly tested and easily revised and adapted.

We believe that typed functional languages are particularly well suited for this
task since they allow the creation of type structures that closely reflect the mod-
eled domains. This aspect gains in importance as scientific models evolve from
being low-level and based on plain numbers toward incorporating higher-level
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(data) structures, such as sequences, tuples, and other data types, as evidenced
by the presented application from genome evolution.

References

1. E. Allen, J. Carrington, M. Erwig, K. Kasschau, and S. Kollmansberger. Compu-
tational Modeling of microRNA Formation and Target Differentiation in Plants.
2005. In preparation.

2. J. C. Carrington and V. Ambros. Role of microRNAs in Plant and Animal Devel-
opment. Science, 301:336–338, 2003.

3. Bor-Yuh Evan Chang and Manu Sridharan. PML: Toward a High-Level Formal
Language for Biological Systems. In Bio-CONCUR, 2003.

4. Steven Eker, Merrill Knapp, Keith Laderoute, Patrick Lincoln, Jose Meseguer,
and Kemal Sonmez. Pathway Logic: Symbolic Analysis of Biological Signaling. In
Pacific Symp. on Biocomputing, pages 400–412, 2002.

5. M. Erwig and S. Kollmansberger. Probabilistic Functional Programming in
Haskell. Journal of Functional Programming, 2005. To appear.
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Abstract. For any LP system, tabling can be quite handy in a variety of tasks,
especially if it is efficiently implemented and fully integrated in the language. Im-
plementing tabling in Mercury poses special challenges for several reasons. First,
Mercury is both semantically and culturally quite different from Prolog. While
decreeing that tabled predicates must not include cuts is acceptable in a Prolog
system, it is not acceptable in Mercury, since if-then-elses and existential quantifi-
cation have sound semantics for stratified programs and are used very frequently
both by programmers and by the compiler. The Mercury implementation thus has
no option but to handle interactions of tabling with Mercury’s language features
safely. Second, the Mercury implementation is vastly different from the WAM,
and many of the differences (e.g. the absence of a trail) have significant impact
on the implementation of tabling. In this paper, we describe how we adapted the
copying approach to tabling to implement tabling in Mercury.

1 Introduction

By now, it is widely recognized that tabling adds power to logic programming. By
avoiding repeated subcomputations, it often significantly improves the performance of
applications, and by terminating more often it allows for a more natural and declar-
ative style of programming. As a result, many Prolog systems (e.g., XSB, YAP, and
B-Prolog) nowadays offer some form of tabling. Mercury is a language with an effi-
cient implementation and comes with a module and a strong type system that ease the
development of industrial-scale applications. Like Prolog systems with tabling, Mer-
cury aims to encourage a more declarative style of programming than “plain” Prolog.
This paper discusses implementation aspects of adding tabling to Mercury.

When deciding which tabling mechanism to adopt, an implementor is faced with sev-
eral choices. Linear tabling strategies [11, 3] are relatively easy to implement (at least
for Prolog), but they are also relatively ad hoc and often perform recomputation. Tabled
resolution strategies such as OLDT [9] and SLG [1] are guaranteed to avoid recompu-
tation, but their implementation is challenging because they require the introduction of
a suspension/resumption mechanism into the basic execution engine.

In the framework of the WAM [10], currently there are two main techniques to im-
plement suspension/resumption. The one employed both in XSB and in YAP [5], that of
the SLG-WAM [6], implements suspension via stack freezing and resumption using an
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extended trail mechanism called the forward trail. The SLG-WAM mechanism relies
heavily on features specific to the WAM, and imposes a small but non-negligible over-
head on all programs, not just the ones which use tabling. The other main mechanism,
CAT [2], completely avoids this overhead; it leaves the WAM stacks unchanged and im-
plements suspension/resumption by incrementally saving and restoring the WAM areas
that proper tabling execution needs to preserve in order to avoid recomputation.

For Mercury, we chose to base tabling on SLG resolution. We decided to restrict
the implementation to the subset of SLG that handles stratified programs. We chose
CAT as implementation platform, because the alternatives conflict with basic assump-
tions of the Mercury implementation. For example, Mercury has no trail to freeze, let
alone a forward one, and freezing the stack à la SLG-WAM breaks Mercury’s invari-
ant that calls to deterministic predicates leave the stack unchanged. CAT is simply the
tabling mechanism requiring the fewest, most isolated changes to the Mercury imple-
mentation. This has the additional benefit that it allows us to set up the system to
minimize the impact of tabling on the performance of program components that do
not use tabling; given an appropriate static analysis, the overhead can be completely
eliminated.

This paper documents the implementation of tabling in Mercury (we actually aim
to compute a specific minimal model of stratified programs: the perfect model). We
describe how we adapted the CAT (Copying Approach to Tabling) mechanism to a dif-
ferent implementation technology, one which is closer to the execution model of con-
ventional languages than the WAM, and present the additional optimizations that can be
performed when tabling is introduced in such an environment. Finally, we mention how
we ensure the safety of tabling’s interactions with Mercury’s if-then-else and existential
quantification, constructs that would require the use of cut in Prolog.

The next section reviews Mercury and its implementation. Section 3 introduces
tabling in Mercury, followed by the paper’s main section (Section 4) which describes the
implementation of tabling in detail. A brief performance comparison with other Prolog
systems with tabling implementations based on SLG resolution appears in Section 5.

2 A Brief Introduction to Mercury

Mercury is a pure logic programming language intended for the creation of large, fast,
reliable programs. While the syntax of Mercury is based on the syntax of Prolog, se-
mantically the two languages are very different due to Mercury’s purity, its type, mode,
determinism and module systems, and its support for evaluable functions. Mercury has
a strong Hindley-Milner type system very similar to Haskell’s. Mercury programs are
statically typed; the compiler knows the type of every argument of every predicate (from
declarations or inference) and every local variable (from inference).

The mode system classifies each argument of each predicate as either input or out-
put; there are exceptions, but they are not relevant to this paper. If input, the argument
passed by the caller must be a ground term. If output, the argument passed by the caller
must be a distinct free variable, which the predicate or function will instantiate to a
ground term. It is possible for a predicate or function to have more than one mode; the
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usual example is append, which has two principal modes: append(in,in,out) and
append(out,out,in). We call each mode of a predicate or function a procedure.
The Mercury compiler generates different code for different procedures, even if they
represent different modes of the same predicate or function. Each procedure has a
determinism, which puts limits on the number of its possible solutions. Procedures
with determinism det succeed exactly once; semidet procedures succeed at most once;
multi procedures succeed at least once; while nondet procedures may succeed any
number of times. A complete description of the Mercury language can be found at
http://www.cs.mu.oz.au/research/mercury/information/doc-latest/mercury ref.

The Mercury implementation. The front end of the Mercury compiler performs type
checking, mode checking and determinism analysis. Programs without any errors are
then subject to program analyses and transformations (such as the one being presented
in Section 4) before being passed on to a backend for code generation.

The Mercury compiler has several backends. So far, tabling is implemented only for
the original backend which generates low level C code [7], because it is the only one
that allows us to explicitly manipulate stacks (see Section 4.3). The abstract machine
targeted by this low level backend has three main data areas: a heap and two stacks.
The heap is managed by the Boehm-Demers-Weiser conservative garbage collector for
C. Since this collector was not designed for logic programming systems, it does not
support any mechanism to deallocate all the memory blocks allocated since a specific
point in time. Thus Mercury, unlike Prolog, does not recover memory by backtracking
and recovers all memory blocks via garbage collection.

The Mercury abstract machine has two stacks: the det stack and the nondet stack. In
most programs, most procedures can succeed at most once. This means that one cannot
backtrack into a call to such a procedure after the procedure has succeeded, and thus
there is no need to keep around the arguments and local variables of the call after the
initial success (or failure, for semidet procedures). Mercury therefore puts the stack
frames of such procedures on the det stack, which is managed in strict LIFO fashion.

Procedures that can succeed more than once have their stack frames allocated on
the nondet stack. These frames are removed only when procedures fail. Since the stack
frames of such calls stick around when the call succeeds, the nondet stack is not a true
LIFO stack. Given a clause p(. . .) :- q(. . .), r(. . .), s(. . .), where p, q and r are
all nondet or multi, the stack will contain the frames of p, q and r in order just after the
call to r. After r succeeds and control returns to p, the frames of the calls to q and r are
still on the stack. The Mercury abstract machine thus has two registers to point to the
nondet stack: maxfr always points to the top frame, while curfr points to the frame
of the currently executing call. (If the currently executing call uses the det stack, then
curfr points to the frame of its most recent ancestor that uses the nondet stack.)

There are two kinds of frames on the nondet stack: ordinary and temporary. An or-
dinary frame is allocated for a procedure that can succeed more than once, i.e. whose
determinism is nondet or multi. Such a frame is equivalent to the combination of a
choice point and an environment in a Prolog implementation based on the WAM [10].
Ordinary nondet stack frames have five fixed slots and a variable number of other slots.
The other slots hold the values of the variables of the procedure, including its argu-
ments; these are accessed via offsets from curfr. The five fixed slots are:
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prevfr The previous frame slot points to the stack frame immediately below this one.
(Both stacks grow higher.)

redoip The redo instruction pointer slot contains the address of the instruction to
which control should be transferred when backtracking into (or within) this call.

redofr The redo frame pointer slot contains the address that should be assigned to
curfr when backtracking jumps to the address in the redoip slot.

succip The success instruction pointer slot contains the address of the instruction to
which control should be transferred when the call of this stack frame succeeds.

succfr The success frame pointer slot contains the address of the stack frame that
should be assigned to curfr when the call owning this stack frame succeeds; this
will be the stack frame of its caller.

The redoip and redofr slots together constitute the failure continuation, while the
succip and succfr slots together constitute the success continuation. In the example
above, both q’s and r’s stack frames have the address of p’s stack frame in their succfr
slots, while their succip slots point to the instructions in p after their respective calls.

The compiler converts multi-clause predicate definitions into disjunctions. When ex-
ecuting in the code of a disjunct, the redoip slot points to the first instruction of the
next disjunct or, if this is the last disjunct, to the address of the failure handler whose
code removes the top frame from the nondet stack, sets curfr from the value in the
redofr slot of the frame that is now on top, and jumps to the address in its redoip
slot. Disjunctions other than the outermost one are implemented using temporary non-
det stack frames, which have only prevfr, redoip and redofr slots [8].

The stack slot assigned to a variable contains garbage before the variable is instanti-
ated; afterward, it contains the value of the variable. Since the compiler knows the state
of instantiation of every visible variable at every program point, the code it generates
will never look at stack slots containing garbage. This means that backtracking does not
have to reset variables to unbound, which in turn means that the Mercury implementa-
tion does not need a trail.

3 Tabling in Mercury

In tabling systems, some predicates are declared tabled and use tabled resolution for
their evaluation; all other predicates are non-tabled and are evaluated using SLD. Mer-
cury also follows this scheme, but it supports three different forms of tabled evaluation:
memoization (caching), loop checking, and minimal model evaluation. We concentrate
on the last form, which is the most interesting and subsumes the other two.

The idea of tabling is to remember the first invocation of each call (henceforth re-
ferred to as a generator) and its computed results in tables (in a call table and an answer
table respectively), so that subsequent identical calls (referred to as the consumers) can
use the remembered answers without repeating the computation. Mercury programmers

:- pred path(int::in, int::out) is nondet.
:- pragma minimal model(path/2).

path(A, B) :- edge(A, B).
path(A, B) :- edge(A, C), path(C, B).

who are interested in computing the an-
swers of tabled predicate calls according
to the perfect model semantics can use the
‘minimal model’ pragma. An example is
the usual path predicate on the right.
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Predicates with minimal model pragmas are required to satisfy two requirements
not normally imposed on all Mercury predicates. The first requirement is that the set of
values computed by the predicate for its output arguments is completely determined by
the values of the input arguments. This means that the predicate must not do I/O; it must
also be pure, i.e., free of observable side-effects such as updating the value of a global
variable through the foreign function interface. The second is that each argument of a
minimal model predicate must be either fully input (ground at call and at return) or fully
output (free at call, ground at return). In other words, partially instantiated arguments
and arguments of unknown instantiation are not allowed. How this restriction affects
the implementation of tabling in Mercury is discussed in the following section.

When a call to a minimal model predicate is made, the program must check whether
the call exists in the call table or not. In SLG terminology [1], this takes place using
the NEW SUBGOAL operation. If the subgoal s is new, it is entered in the table and this
call, as the subgoal’s generator, will use PROGRAM CLAUSE RESOLUTION to derive
answers. The generator will use the NEW ANSWER operation to record each answer it
computes in a global data structure called the answer table of s. If, on the other hand, (a
variant of) s already exists in the table, this call is a consumer and will resolve against
answers from the subgoal’s answer table. Answers are fed to the consumer one at a time
through ANSWER RETURN operations.

Because in general it is not known a priori how many answers a tabled call will
get in its table, and because there can be mutual dependencies between generators and
consumers, the implementation requires: (a) a mechanism to retain (or reconstruct) and
reactivate the execution environments of consumers until there are no more answers for
them to consume, and (b) a mechanism for returning answers to consumers and deter-
mining when the evaluation of a (generator) subgoal is complete, i.e. when it has pro-
duced all its answers. As mentioned, we chose the CAT suspension/resumption mech-
anism as the basis for Mercury’s tabling implementation. However, we had to adapt it
to Mercury and extend it in order to handle existential quantification and negated con-
texts. For completion, we chose the incremental completion approach described in [6].
A subgoal can be determined to be complete if all program clause resolution has fin-
ished and all instances of this subgoal have resolved against all derived answers. How-
ever, as there might exist dependencies between subgoals, these have to be taken into
account by maintaining and examining the subgoal dependency graph, finding a set of
subgoals that depend only on each other, completing them together, and then repeating
the process until there are no incomplete subgoals. We refer to these sets of subgoals
as scheduling components. The generator of some subgoal (typically the oldest) in the
component is called the component’s leader.

4 The Implementation of Tabling in Mercury

4.1 The Tabling Transformation and Its Supporting Data Structures

Mercury allows programmers to use impure constructs to implement a pure interface,
simply by making a promise to this effect. The tabling implementation exploits this
capability. Given a pure predicate such as path/2, a compiler pass transforms its body
by surrounding it with impure and semipure code as shown in Fig. 3 (impure code
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may write global variables; semipure code may only read them). Note that the compiler
promises that the transformed code behaves as a pure goal, since the side-effects inside
are not observable from the outside.

As mentioned, the arguments of tabled procedures must be either fully input or fully
output. This considerably simplifies the implementation of call tables. SLG resolution
considers two calls to represent the same subgoal if they are variants, i.e., identical up
to variable renaming. In Mercury, this is the case if and only if the two calls have the
same ground terms in their input argument positions, because the output arguments of
a call are always distinct variables. Conceptually, the call table of a predicate with n
input arguments is a tree with n + 1 levels. Level 0 contains only the root node. Each
node on level 1 corresponds to a value of the first input argument that the predicate has
been called with; in general, each node on level k corresponds to a combination of the
values of the first k input arguments that the predicate has been called with. Thus each
node on level n uniquely identifies a subgoal.

The transformed body of a minimal model predicate starts by looking up the call
table to see whether this subgoal has been seen before or not. Given a predicate declared
as in the code shown in Fig. 1, the minimal model tabling transformation inserts the
code shown on the same figure at the start of its procedure body.

:- pred p(int::in, string::in, int::out, t1::in, t2::out) is nondet.
:- pragma minimal model(p/5).

p(In1, In2, Out1, In3, Out2) :-
...

pickup call table root for p 5(CallTableRoot),
impure lookup insert int(CallTableRoot, In1, CallNode1),
impure lookup insert string(CallNode1, In2, CallNode2),
impure lookup insert user(CallNode2, In3, CallNode3),
impure subgoal setup(CallNode3, Subgoal, Status)

Fig. 1. Type-directed program transformation for arguments of tabled calls

We store all the information we have about each subgoal in a subgoal structure. We
reach the subgoal structure of a given subgoal through a pointer in the subgoal’s level
n node in the call table. The subgoal structure has the following eight fields (cf. Fig. 2),
which we will discuss as we go along: 1) the subgoal’s status (new, active or complete);
2) the chronological list of the subgoal’s answers computed so far; 3) the root of the

root for p/5

CallTableRoot

(size, num_entries, etc) Header Trie RootHeader

CallNode1

Hash Table (for values of In1)

CallNode2

Hash Table (for values of In2)

Trie (for values of In3)

CallNode3

Subgoal Structure

Status

Answer Table

Answer List

Consumer List

Subgoal’s Leader

Follower List

Gener nondet Addr

NCA nondet Addr

Fig. 2. Data structures created for the calls of predicate p/5
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subgoal’s answer table; 4) the list of the consumers of this subgoal; 5) the leader of the
scheduling component this subgoal belongs to; 6) if this subgoal is the leader, the list
of its followers; 7) the address of the generator’s frame on the nondet stack; and 8) the
address of the youngest nondet stack frame that is an ancestor of both this generator
and all its consumers; we call this the nearest common ancestor (NCA).

path(A, B) :-
promise pure (
pickup call table root for path 2(CallTableRoot),
impure lookup insert int(CallTableRoot, A, CallNode1),
impure subgoal setup(CallNode1, Subgoal, Status),
( % switch on ‘Status’

Status = new,
(

impure mark as active(Subgoal),
% original body of path/2 in the two lines below
edge(A, C),
( C = B ; path(C, B) ),
semipure get answer table(Subgoal, AnsTabRoot),
impure lookup insert int(AnsTabRoot, B, AnsNode1),
impure answer is not duplicate(AnsNode1),
impure new answer block(Subgoal, 1, AnsBlock),
impure save answer(AnsBlock, 0, B)

;
impure completion(Subgoal),
fail

)
;

Status = complete,
semipure return all answers(Subgoal, AnsBlock),
semipure restore answer(AnsBlock, 0, B)

;
Status = active,
impure suspend(Subgoal, AnsBlock),
semipure restore answer(AnsBlock, 0, B)

)
).

Fig. 3. Example of the tabling transformation on path/2

In the code of Fig. 3,
CallTableRoot, CallNode1,
CallNode2 and CallNode3
are all pointers to nodes
in the call tree at levels
0, 1, 2 and 3 respectively;
see Fig. 2. CallTableRoot
points to the global vari-
able generated by the Mer-
cury compiler to serve as the
root of the call table for this
procedure. This variable is
initialized to NULL, indicat-
ing no child nodes yet. The
first call to p/5 will cause
lookup insert int to cre-
ate a hash table in which ev
ery entry is NULL, and make
the global variable point to
it. The lookup insert int
call will then hash In1, cre-
ate a new slot in the indi-
cated bucket (or in one of its
overflow cells) and return the
address of the new slot as
CallNode1. At later calls, the hash table will exist, and by then we may have seen
the then current value of In1 as well; lookup insert int will perform a lookup if we
have and an insertion if we have not. Either way, it will return the address of the slot
selected by In1. The process then gets repeated with the other input arguments. (The
predicates being called are different because Mercury uses different representations for
different types. For example, integers are hashed directly but we hash the characters of
a string, not its address.)

User-defined types. Values of these types consist of a function symbol applied to zero
or more arguments. In a strongly typed language such as Mercury, the type of a variable
directly determines the set of function symbols that variable can be bound to. The data
structure we use to represent a function symbol from user-defined types is therefore a
trie, a data structure which has extensively been used in tabled systems [4]. If the func-
tion symbol is a constant, we are done. If it has arguments, then lookup insert user
processes them one by one the same way we process the arguments of predicates, using
the slot selected by the function symbol to play the role of the root. In this way, the path

-
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in the call table from the root to a leaf node representing a given subgoal has exactly
one trie node or hash table on it for each function symbol in the input arguments of the
subgoal; their order is given by a preorder traversal of those function symbols.

Polymorphic types. This scheme works for monomorphic predicates because at each
node of the tree, the type of the value at that node is fixed, and the type determines
the mechanism we use to table values of that type (integer, string or float hash table
for builtin types, a trie for user-defined types). For polymorphic predicates (whose sig-
natures include type variables) the caller passes extra arguments identifying the actual
types bound to those type variables. We first table these arguments, which are terms of
a builtin type. Once we have followed the path from the root to the level of the last of
these arguments, we have arrived at what is effectively the root of the table for a given
monomorphic instance of the predicate’s signature, and we proceed as described above.

4.2 The Tabling Primitives

The subgoal_setup primitive ensures the presence of the subgoal’s subgoal structure.
If this is a new subgoal, then CallNode3 will point to a table node containing NULL.
In that case, subgoal_setup will (a) allocate a new subgoal structure, initializing its
fields to reflect the current situation, (b) update the table node pointed to by CallNode3
to point to this new structure, and (c) return this same pointer as Subgoal. If this is not
the first call to this procedure with these input arguments, then CallNode3 will point
to a table node that contains a pointer to the previously allocated subgoal structure, so
subgoal_setupwill just return this pointer.

subgoal_setup returns not just Subgoal, but also the subgoal’s status. When first
created, the status of the subgoal is set to new. It becomes active when a generator has
started work on it and becomes complete once it is determined that the generator has
produced all its answers.

What the transformed procedure body does next depends on the subgoal’s initial sta-
tus. If the status is active or complete, the call becomes one of the subgoal’s consumers.
If it is new, the call becomes the subgoal’s generator and executes the original body of
the predicate after changing the subgoal’s status to active. When an answer is gener-
ated, we check whether this answer is new. We do this by using get_answer_table to
retrieve the root of the answer table from the subgoal structure, and inserting the output
arguments into this table one by one, as we inserted the input arguments into the call
table. The node on the last level of the answer table thus uniquely identifies this answer.

answer_is_not_duplicate looks up this node. If the tip of the answer table se-
lected by the output argument values is NULL, then this is the first time we have com-
puted this answer for this subgoal, and the call succeeds. Otherwise it fails. (To make
later calls fail, answer_is_not_duplicate sets the tip to non-NULL on success.) We
thus get to call new_answer_block only if the answer we just computed is new.

new_answer_block adds a new item to the end of the subgoal’s chronological list
of answers, the new item being a fresh new memory block with room for the given
number of output arguments. The call to new_answer_block is then followed by a call
to save_answer for each output argument to fill in the slots of the answer block.

When the last call to save_answer returns, the transformed code of the tabled pred-
icate succeeds. When backtracking returns control to the tabled predicate, it will drive
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the original predicate body to generate more and more answers. In programs with a fi-
nite perfect model, the answer generation will eventually stop, and execution will enter
the second disjunct, which invokes the completion primitive. This will make the an-
swers generated so far for this subgoal available to any consumers that are waiting for
such answers. This may generate more answers for this subgoal if the original predicate
body makes a call, directly or indirectly, to this same subgoal. The completion prim-
itive will drive this process to a fixed point (see Sect. 4.5) and then mark the subgoal
as complete. Having already returned all answers of this subgoal from the first disjunct,
execution fails out of the body of the transformed predicate.

If the subgoal is initially complete, we call return_all_answers, which succeeds
once for each answer in the subgoal’s chronological list of answers. For each answer,
calls to restore_answer pick up the output arguments put there by save_answer.

If the initial status of the subgoal is active, then this call is a consumer but the gen-
erator is not known to have all its answers. We therefore call the suspend primitive.
suspend has the same interface as return_all_answers, but its implementation is
much more complicated. We invoke the suspend primitive when we cannot continue
computing along the current branch of the SLD tree. The main task of the suspension
operation is therefore to record the state of the current branch of the SLD tree to allow its
exploration later, and then simulate failure of that branch, allowing the usual process of
backtracking to switch execution to the next branch. Sometime later, the completion
primitive will restore the state of this branch of the SLD tree, feed the answers of the
subgoal to it, and let the branch compute more answers if it can.

4.3 Suspension of Consumers

The suspend primitive starts by creating a consumer structure and adding it to the
current subgoal’s list of consumers. This structure has three fields: a pointer to this sub-
goal’s subgoal structure (available in suspend’s Subgoal argument), an indication of
which answers this consumer has consumed so far, and the saved state of the consumer.

Making a copy of all the data areas of the Mercury abstract machine (det stack, non-
det stack, heap and registers) would clearly be sufficient to record the state of the SLD
branch, but equally clearly it would also be overkill. To minimize overhead, we want
to record only the parts of the state that contain needed information which can change
between the suspension of this SLD branch and any of its subsequent resumptions. For
consumer suspensions, the preserved saved state is as follows.

Registers. The special purpose abstract machine registers (maxfr, curfr, the det stack
pointer sp, and the return address register succip) all need to be part of the saved state,
but of all the general purpose machine registers used for parameter passing, the only one
that contains live data and thus needs to be saved is the one containing Subgoal.

Heap. With Mercury’s conservative collector, heap space is recovered only by garbage
collection and never by backtracking. This means that a term on the heap will naturally
hang around as long as a pointer to it exists, regardless of whether that pointer is in a
current stack or in a saved copy. Moreover, in the absence of destructive updates, this
data will stay unchanged. This in turn means that, unlike a WAM-based implementation
of CAT, Mercury’s implementation of minimal model tabling does not need to save or



Tabling in Mercury: Design and Implementation 159

restore any part of the heap. This is a big win, since the heap is typically the largest area.
The tradeoff is that we need to save more data from the stacks, because the mapping
from variables to values (the current substitution) is stored entirely in stack slots.

Stacks. The way Mercury uses stack slots is a lot closer to the runtime systems of im-
perative languages than to the WAM. First of all, there are no links between variables
because the mode system does not allow two free variables to be unified. Binding a vari-
able to a value thus affects only the stack slot holding the variable. Another difference
concerns the timing of parameter passing. If a predicate p makes the call q(A), and the
definition of q has a clause with head q(B), then in Prolog, A would be unified with B
at the time of the call, and any unification inside q that binds B would immediately up-
date A in p’s stack frame. In Mercury, by contrast, there is no information flow between
caller and callee except at call and return. At call, the caller puts the input arguments
into abstract machine registers and the callee picks them up; at return, the callee puts
the output arguments into registers and the caller picks them up. Each invocation puts
the values it picks up into a slot of its own stack frame when it next executes a call. The
important point is that the only code that modifies a stack frame fr is the code of the
procedure that created fr.

CAT saves the frames on the stacks between the stack frame of the generator
(excluded) and the consumer (included), and uses the WAM trail to save and restore
addresses and values of variables which have been bound since the creation of a con-
sumer’s generator. Mercury has no variables on its heap, but without a mechanism like
the trail to guide the selective copying of stack slots which might change values, it must
make sure that suspension saves information in all stack frames that could be modified
between the suspension of a consumer and its resumption by its generator. The deep-
est frame on the nondet stack that this criterion requires us to save is the frame of the
nearest common ancestor (NCA) of the consumer and the generator. We find the NCA
by initializing two pointers to point to the consumer and generator stack frames, and
repeatedly replacing whichever pointer is higher with the succfr link of the frame it
points to, stopping when the two pointers are equal.

Two technical issues deserve to be mentioned. Note that we must save the stack
frame of the NCA because the variable bindings in it may have changed between the
suspension and the resumption. Also, it is possible for the nearest common ancestor of
the generator and consumer to be a procedure that lives on the det stack. The expanded
version of this paper [8] gives examples of these situations, motivates the implementa-
tion alternatives we chose to adopt, and argues for the correctness of saving (only) this
information for consumers.

4.4 Maintenance of Subgoal Dependencies and Their Influence on Suspensions

We have described suspension as if consumers will be scheduled only by their nearest
generator. This is indeed the common case, but as explained in Section 3 there are also
situations in which subgoals are mutually dependent and cannot be completed on an
individual basis. To handle such cases, Mercury maintains a stack-based approximation
of dependencies between subgoals, in the form of scheduling components. For each
scheduling component (a group subgoals that may depend on each other), its leader is
the youngest generator GL for which all consumers younger than GL are consumers of
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generators that are not older than GL. Of all scheduling components, the one of most
interest is that on the top of the stack. This is because it is the one whose consumers
will be scheduled first. We call its leader the current leader.

The maintenance of scheduling components is reasonably efficient. Information
about the leader of each subgoal and the leader’s followers is maintained in the subgoal
structure (cf. Fig. 2). Besides creation of a new generator (in which case the generator
becomes the new current leader with no followers), this information possibly changes
whenever execution creates a consumer suspension. If the consumer’s generator, G, is
the current leader or is younger than the current leader, no change of leaders takes place.
If G is older than the current leader, a coup happens, G becomes the current leader, and
its scheduling component gets updated to contain as its followers the subgoals of all
generators younger than G. In either case, the saved state for the consumer suspension
will be till the NCA of the consumer and the current leader. This generalizes the scheme
described in the previous section.

Because a coup can happen even after the state of a consumer has been saved, we
also need a mechanism to extend the saved consumer states. The mechanism we have
implemented consists of extending the saved state of all consumers upon change of
leaders. When a coup happens, the saved state of all followers (consumers and genera-
tors) of the old leader is extended to the stack frame of the NCA of each follower and
the new leader. Unlike CAT which tries to share the trail, heap, and local stack segments
it copies [2], in Mercury we have not (yet) implemented sharing of the copied stack seg-
ments. It is our intention to implement and evaluate such a mechanism. However, note
that the space problem is not as severe in Mercury as it is in CAT, because in Mercury
there is no trail and no information from the heap is ever copied, which means that heap
segments for consumers are naturally shared.

On failing back to a generator which is a leader, scheduling of answers to all its
followers will take place, as described below. When the scheduling component gets
completed, execution will continue with the immediately older scheduling component,
whose leader will then become the current leader.

4.5 Resumption of Consumers and Completion

The main body of the completion primitive consists of three nested loops: over all
subgoals in the current scheduling component S, over all consumers of these subgoals,
and over all answers to be returned to those consumers. The code in the body of the
nested loops arranges for the next unconsumed answer to be returned to a consumer
of a subgoal in S. It does this by restoring the stack segments saved by the suspend
primitive, putting the address of the relevant answer block into the abstract machine
register assigned to the return value of suspend, restoring the other saved abstract ma-
chine registers, and branching to the return address stored in suspend’s stack frame.
Each consumer resumption thus simulates a return from the call to suspend.

Since restoring the stack segments from saved states of consumers clobbers the state
of the generator that does the restoring (the leader of S), the completion primitive
first saves the leader’s own state, which consists of saving the nondet stack down to the
oldest NCA of the leader generator and any of the consumers it schedules, and saving
the part of the det stack allocated since the creation of this nondet frame. To provide
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the information required for the second part of this operation, we extend every ordinary
nondet stack frame with a sixth slot that contains the address of the top of the det stack
at the time of the nondet stack frame’s creation.

Resumption of a consumer essentially restores the saved branch of the SLD search
tree, but restoring its saved stack segments intact is not a good idea. The reason is that
leaving the redoip slots of the restored nondet stack frames unchanged resumes not
just the saved branch of the SLD search tree, but also the departure points of all the
branches going off to its right. Those branches have been explored immediately after
the suspension of the consumer, because suspension involves simulating the failure of
the consumer, thus initiating backtracking. When we resume a consumer to consume
an answer, we do not want to explore the exact same alternatives again, since this could
lead to an arbitrary slowdown. We therefore replace all the redoips in saved nondet
stack segments to make them point to the failure handler in the runtime system. This
effectively cuts off the right branches, making them fail immediately. Given the choice
between doing this pruning once when the consumer is suspended or once for each time
the consumer is resumed, we obviously choose the former.

This pruning means that when we restore the saved state of a consumer, only the
success continuations are left intact, and thus the only saved stack frames the restored
SLD branch can access are those of the consumer’s ancestors. Any stack frames that
are not the consumer’s ancestors have effectively been saved and restored in vain.

When a resumed consumer has consumed all the currently available answers, it fails
out of the restored segment of the nondet stack. We arrange to get control when this
happens by setting the redoip of the very oldest frame of the restored segment to point
to the code of the completion primitive. When completion is reentered in this way,
it needs to know that the three-level nested loop has already started and how far it has
gone. We therefore store the state of the nested loop in a global record. When this state
indicates that we have returned all answers to all consumers of subgoals in S, we have
reached a fixed point. At this time, we mark all subgoals in S as complete and we
reclaim the memory occupied by the saved states of all their consumers and generators.

4.6 Existential Quantification

Mercury supports existential quantification. This construct is usually used to check
whether a component of a data structure possesses a specific property as in the code:

:- pred list contains odd number(list(int)::in) is semidet.

list contains odd number(List) :- some [N] (member(N, List), odd(N)).

Typically the code inside the quantification may have more than one solution, but the
code outside only wants to check whether a solution exists without caring about the
number of solutions or their bindings. One can thus convert a multi or nondet goal into
a det or semidet goal by existentially quantifying all its output variables. Mercury im-
plements quantifications of that form using what we call a commit operation, which
some Prologs call a once operation. The operation saves maxfr when it enters the goal
and restores it afterward, throwing away all the stack frames that have been pushed onto
the nondet stack in the meantime. The interaction with tabling arises from the fact that
the discarded stack frames can include the stack frame of a generator. If this happens,
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the commit removes all possibility of the generator being backtracked into ever again,
which in turn may prevent the generation of answers and completion of the correspond-
ing subgoal. Without special care, all later calls of that subgoal will become consumers
who will wait forever for the generator to schedule the return of their answers.

To handle such situations, we introduce of a new stack which we call the cut stack.
This stack always has one entry for each currently active existentially quantified goal;
new entries are pushed onto it when such a goal is entered and popped when that goal
either succeeds or fails. Each entry contains a pointer to a list of generators. Whenever
a generator is created, it is added to the list in the entry currently on top of the cut stack.
When the goal inside the commit succeeds, the code that pops the cut stack entry checks
its list of generators. For all generators whose status is not complete, we erase all trace
of their existence and reset the call table node that points to the generator’s subgoal
structure back to a null pointer. This allows later calls to that subgoal to become new
generators.

If the goal inside the commit fails, the failure may have been due to the simulated
failure of a consumer inside that goal. When the state of the consumer is restored, it may
well succeed, which means that any decision the program may have taken based on the
initial failure of the goal may be incorrect. When the goal inside the commit fails, we
therefore check whether any of the generators listed in the cut stack entry about to be
popped off have a status other than complete. Any such generator must have consumers
whose failure may not be final, so we throw an exception in preference to computing
incorrect results. Note that this can happen only when the leader of the incomplete
generator’s scheduling component is outside the existential quantification.

4.7 Possibly Negated Contexts

The interaction of tabling with cuts and Prolog-style negation is notoriously tricky.
Many implementation papers on tabling ignore the issue altogether, considering only
the definite subset of Prolog. An implementation of tabling for Mercury cannot duck
the issue. Mercury programs rely extensively on if-then-elses, and if-then-elses involve
negation: “if C then T else E” is semantically equivalent to (C ∧ T ) ∨ (¬∃C ∧ E).
Of course, operationally the condition is executed only once. The condition C is a
possibly negated context: it is negated only if it has no solutions. Mercury implements
if-then-else using a soft cut: if the condition succeeds, it cuts away the possibility of
backtracking to the else part only (the condition may succeed more than once).

If C fails, execution should continue at the else part of the if-then-else. This poses
a problem for our implementation of tabling, because the failure of the condition does
not necessarily imply that C has no solution: it may also be due to the suspension of a
consumer called (directly or indirectly) somewhere inside C, as in the code below.

p(. . .) :- tg(. . .), ( if ( . . ., tc(. . .), . . . ) then . . . else . . . ), . . .

If tc suspends and is later resumed to consume an answer, the condition may evaluate to
true. However, by then the damage will have been done, because we will have executed
the code in the else part.

We have not yet implemented a mechanism that will let us compute the correct an-
swer in such cases, because any such mechanism would need the ability to transfer
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the “generator-ship” of the relevant subgoal from the generator of t to its consumer,
or something equivalent. However, we have implemented a mechanism that guarantees
that incorrect answers will not be computed. This mechanism is the possibly-negated-
context stack, or pneg stack for short. We push an entry onto this stack when entering
a possibly negated context such as the condition of an if-then-else. The entry contains
a pointer to a list of consumers, which is initially empty. When creating a consumer,
we link the consumer into the list of the top entry on the pneg stack. When we enter
the else part of the if-then-else, we search this list looking for consumers that are sus-
pended. Since suspension simulates failure without necessarily implying the absence of
further solutions, we throw an exception if the search finds such a consumer and abort
execution. If not, we simply pop the entry of the pneg stack. We also perform the pop on
entry to the then part of the if-then-else. Since in that case there is no risk of committing
to the wrong branch of the if-then-else, we do so without looking at the popped entry.

There are two other Mercury constructs that could compute wrong answers if the
failure of a goal does not imply the absence of solutions for it. The first is negation. We
handle negation as a special case of if-then-else: ¬G is equivalent to “if G then fail
else true”. The other is the generic all-solutions primitive builtin_aggregate,
which serves as the basic building block for all of Mercury’s all-solutions predicates.
The implementation of builtin_aggregateuses a failure driven loop. To ward against
builtin_aggregate(Closure,...) mistaking the failure of call(Closure) due
to a suspension somewhere inside Closure as implying the absence of solutions to
Closure, we treat the loop body as the condition of an if-then-else, i.e. we surround it
with the code we normally insert at the start of the condition and the start of the else
part (see [8] for the details).

Entries on both the cut stack and the pneg stack contain a field that points to the stack
frame of the procedure invocation that created them, which is of course also responsible
for removing them. When saving stack segments or extending saved stack segments, we
save an entry on the cut stack or the pneg stack if the nondet stack frame they refer to
is in the saved segment of the nondet stack.

5 Performance Evaluation

We ran several benchmarks to measure the performance of Mercury with tabling sup-
port, but space limitations allow presenting only some of them here.

Overhead of the grade with full tabling support. We compiled the Mercury compiler in
two grades that differ in that one supports minimal model tabling, the form of tabling
discussed in this paper, by including the cut and pneg stacks and the extra slot on nondet
stack frames, and while the other, lacking these extras, supports only the other forms of
tabling (memoization and loop checking). Enabling support for minimal model tabling
without using it (the compiler has no minimal model predicates) increases the size of
the compiler executable by about 5%. On the standard benchmark task for the Mer-
cury compiler, compiling six of its own largest modules, moving to a minimal model
grade with full tabling support slows the compiler down by about 25%. (For compari-
son, enabling debugging leads to a 455% increase in code size and a 135% increase in
execution time.) First of all, it should be mentioned that paying this 25% cost in time
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Table 1. Times (in secs) to execute various versions of transitive closure

chain cycle
benchmark size iter XSB XXX YAP Mercury XSB XXX YAP Mercury
tc lr +- 4K 200 0.62 0.51 0.28 0.58 0.63 0.52 0.28 0.59
tc lr +- 8K 200 1.24 1.05 0.62 1.27 1.27 1.07 0.62 1.30
tc lr +- 16K 200 2.57 2.15 1.51 2.47 2.62 2.12 1.48 2.61
tc lr +- 32K 200 5.25 4.41 3.78 5.23 5.20 4.44 3.78 5.07
tc lr -- 2K 1 2.58 2.46 1.25 3.20 6.22 6.30 2.88 6.24
tc rr -- 2K 1 2.21 2.04 2.94 10.27 6.35 5.85 6.00 27.48

happens only if the user selects a grade with minimal model tabling support: programs
that do not use minimal model tabling at all can use the default asm fast.gc grade and
thus not pay any cost whatsoever. Moreover, this 25% is probably an upper limit. (See
also the results in Table 3 which overall show less than 19% overhead.) Virtually all of
this cost in both space and time is incurred by the extra code we have to insert around
possibly negated contexts; the extra code around commits and the larger size of nondet
stack frames have no measurable overheads (see the data in [8]). If we had an analysis
that could determine that tabled predicates are not involved (directly or indirectly) in
a possibly negated context, this overhead could be totally avoided for that context. We
are now working on such an analysis.

Comparison against other implementations of tabling. We compared the minimal model
grade of Mercury (using rotd-06-10-2005, based on CAT) against XSB (2.7.1, based
on the SLG-WAM), the XXX system (derived from XSB but based on CHAT) and
YAP (version in CVS at 28 July 2005, based on SLG-WAM). XSB and XXX use local
scheduling [6] in the default configuration while YAP uses batched scheduling. Mer-
cury’s scheduling strategy is similar but not identical to batched scheduling. All bench-
marks were run on an IBM ThinkPad R40 laptop with a 2.0 GHz Pentium4 CPU and
512 Mb of memory running Linux. All times were obtained by running each benchmark
eight times, discarding the lowest and highest values, and averaging the rest.

The first set of benchmarks consists of left- and right-recursive versions of transitive
closure. In each case, the edge relation is a chain or a cycle. In a chain of size n, there
are n− 1 edges of the form k → k + 1 for 0 ≤ k < n; in a cycle of size n, there is also
an edge n → 0. We use two query forms: the query with the first argument input and the
second output (+-) and the open query with both arguments output (--). The number
of solutions is linear in the size of the data for the +- query and quadratic for --.The
second set consists of versions of the same generation predicate with full indexing (i) or
Prolog-style first-argument indexing only (p), with the same two kinds of queries. Each
table entry shows how long it takes for a given system to run the specified query on the
specified data iter times (iter=50 for the sg benchmarks). The tables are reset between
iterations. In Tables 1 and 2, benchmarks use a failure driven loop or its equivalent to
perform the iterations, while in Table 3 they use a tail-recursive driver predicate.

The rows for the +- query on left recursive transitive closure show all runtimes to be
linear in the size of the data, as expected. Also, on left recursion, regardless of query,
YAP is fastest, and XSB, XXX and Mercury are pretty similar. On right recursion,
Mercury is slower than the other systems due to saving and restoring stack segments
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Table 2. Times (in secs) to execute various versions of same generation

benchmark XSB XXX YAP Mercury
sg i +- 1.21 1.32 0.34 1.05
sg i -- 3.53 3.89 1.07 2.43
sg p +- 83.56 58.17 34.58 32.14
sg p -- 237.58 161.08 77.63 92.64

of consumers, and having to do so more times due to its different scheduling strategy
(YAP doesn’t do save/restore). It is unfortunate that not all systems implement the same
scheduling strategy. However, local evaluation (i.e., postponing the return of answers
to the generator until the subgoal is complete) is not compatible with the pruning that
Mercury’s execution model requires in existential quantifications, a construct not prop-
erly handled in Prolog systems with tabling. On the same generation (sg) benchmark,
in which consumer suspensions are not created (variant subgoals are only encountered
when the subgoals are completed), Mercury is clearly much faster than XSB and XXX,
although it is still beaten by YAP in three cases out of four. Two reasons why Mercury’s
usual speed advantage doesn’t materialize here are that (1) these benchmarks spend
much of their time executing tabling’s primitive operations, which are in handwritten C
code in all four systems, and (2) the Prolog systems can recover the memory allocated
by an iteration by resetting the heap pointer, whereas in Mercury this can be done only
by garbage collection. (Although the benchmark programs are Datalog, the all-solutions
predicate used by the benchmark harness allocates heap cells.)

Table 3 shows the performance of the same four systems on nine standard Prolog
benchmarks that do not use tabling, taken from [7]. Mercury is clearly the fastest system
by far, even when minimal model tabling is enabled but not used. It is beaten only on
nrev and deriv, which spend all their time in predicates that are tail recursive in Prolog
but not in Mercury.

It is very difficult to draw detailed conclusions from these small benchmarks, but we
can safely say that we succeeded in our objective of concentrating the costs of tabling
on the predicates that use tabling, reducing the performance of untabled predicates by
at most 25%. We can confidently expect Mercury to be much faster than Prolog systems
on programs in which relatively few consumer suspensions are encountered. The speed
of Mercury relative to tabled Prolog systems on real tabled programs will depend on
what fraction of time they spend in tabled predicates.

Table 3. Times (in secs) to execute some standard untabled Prolog benchmarks

benchmark cqueen crypt deriv nrev primes qsort queen query tak total
iterations 60K 30K 500K 300K 150K 300K 2K 100K 1K
Mercury plain 1.92 5.44 5.61 7.99 6.43 6.37 4.77 0.70 0.52 39.8
Mercury tabled 3.26 7.17 4.96 7.08 8.80 7.41 5.83 0.89 1.80 47.2
YAP 9.16 9.14 4.08 4.53 20.89 15.35 12.40 6.44 12.50 94.5
XXX 15.27 10.86 8.08 6.94 31.66 21.72 22.09 17.46 17.30 151.4
XSB 23.64 17.23 11.58 16.71 thrashes 32.83 34.56 29.65 24.05 > 190.3
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Our most promising avenues for further improvement of tabling in Mercury are
clearly (1) improving the speed of saving and restoring suspensions and (2) implement-
ing a scheduling strategy that reduces the number of suspensions and resumptions.

6 Concluding Remarks

Adapting the implementation of tabling to Mercury has been a challenge because the
Mercury abstract machine is very different from the WAM. We have based our imple-
mentation on CAT because it is the only recomputation-free approach to tabling that
does not make assumptions that are invalid in Mercury. However, even CAT required
significant modifications to work properly with Mercury’s stack organization, its mech-
anisms for managing variable bindings, and its type-specific data representations. We
have described all these in this paper as well as describing two new mechanisms, the
cut and the pneg stack, which allow for safe interaction of tabling with language con-
structs such as if-then-else and existential quantification. These constructs are either not
available or not properly handled in other tabled LP systems.

In keeping with Mercury’s orientation towards industrial-scale systems, our design
objective was maximum performance on large programs containing some tabled pred-
icates, not maximum performance on the tabled predicates themselves. The distinction
matters, because it requires us to make choices that minimize the impact of tabling on
non-tabled predicates even when these choices slow down tabled execution. We have
been broadly successful in achieving this objective. Since support for tabling is optional,
programs that do not use it are not affected at all. Even in programs that do use tabling,
non-tabled predicates only pay the cost of one new mechanism: the one ensuring the
safety of interactions between minimal model tabling and negation.

The results on microbenchmarks focusing on the performance of the basic tabled
primitives themselves show tabling in Mercury to be quite competitive with that of
other high-performance tabling systems. It is faster on some benchmarks, slower on
some others, and quite similar on the rest, even though Mercury currently lacks some
obvious tabling optimizations, such as sharing stack segment extensions among con-
sumers. How the system behaves on real tabled applications, written in Mercury rather
than Prolog, remains to be seen. Performing such a comparison across different lan-
guages is not a trivial task because many applications of tabling often rely on features
(e.g., inspection of tables during runtime or dynamic modifications of the Prolog data-
base) which are not available in Mercury. But one should not underestimate either the
difficulty or the importance of adding proper tabling in a safe way to a truly declarative,
high-performance LP system and the power that this brings to it.
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Abstract. In this paper we present a novel approach for determining the
instances of description logic concepts when huge amounts of underlying
data are expected. In such cases, traditional description logic theorem
proving techniques cannot be used due to performance problems. Our
idea is to transform a concept description into a Prolog program which
represents a query-plan. This transformation is done without any knowl-
edge of the particular data. Data are accessed dynamically during the
normal Prolog execution of the generated program. With this technique
only those pieces of data are accessed which are indeed important for
answering the query, i.e. we solve the original problem in a database
friendly way. We evaluate the performance of our approach and compare
it to several description logic reasoners.

Keywords: Description Logics, Reasoning, Instance retrieval, Query-
plan, Prolog.

1 Introduction

The motivation for this work comes from our involvement in the development of a
knowledge management tool-set for the integration of heterogeneous information
sources, using methods and tools based on constraints and logic programming
[4,3].

The main idea of this approach is to collect and manage meta-information
on the sources to be integrated. These pieces of information are stored in a
model warehouse in the form of special models, constraints and mappings linking
these models. We support models of different kinds. Some of them are based
on the traditional object oriented paradigm, while others use description logic
(DL) constructs as well. The model warehouse can be used to answer complex
queries spanning over several data sources. The process of answering such queries
is called mediation, during which we decompose complex integrated queries to
simple queries answerable by individual information sources.

We thus have to query description logic concepts where the actual data – the
so called ABox – is stored in databases. We found that it is practically impossible
to use existing description logic inference systems for this task, as these are not
capable of handling ABoxes stored externally. A further difficulty comes from
the fact that the existing algorithms for querying description logic concepts need
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to examine the whole ABox to answer a query. Because of this, we started to
think about techniques which allow the separation of the inference algorithm
from the data storage.

In our solution, the inference algorithm is divided into two phases. First we
create a query-plan from a DL concept to be queried, without any knowledge of
the actual data. Subsequently, this query-plan can be run on real data, to obtain
the required results. We found that Prolog is suitable for executing such query
plans, although in theory any language with sufficient expressive power could do
the task. For example we could run a query plan in Oracle PL/SQL to reason
on data stored in an Oracle database.

This paper is structured as follows: Section 2 gives a brief introduction to
the description logic formalism and the critical issue of the open world assump-
tion. Section 3 contains an overview of various approaches to handle open world
assumption. In Section 4 we present a case study to introduce our ideas how
to query description logic concepts in a database friendly way. Sections 5 and
6 give an outline of how DL concepts can be transformed to a query plan. In
Section 7 we evaluate the performance of our approach and compare it to the
other reasoning systems. Finally, Section 8 concludes this work with a summary
and perspectives for future research.

2 Background

Description logics is a family of logic based languages used for knowledge rep-
resentation. DL is used for describing the knowledge base of an application field
(medical knowledge, configuration, nuclear engineering etc.). The terminological
system of a description logic knowledge base consists of concepts, which repre-
sent sets of objects, and roles describing binary relations between pairs of objects.
Objects are the instances occurring in the modelled application field, and thus
are also called instances or individuals.

A description logic knowledge base consists of two parts: the TBox and the
ABox. The TBox (terminology box) contains terminology axioms of form C � D
(concept C is subsumed by D). The ABox (assertion box) stores knowledge about
the individuals in the world: a concept assertion of form C(i) denotes that i is
an instance of C, while a role assertion R(i, j) means that the objects i and j
are related according to role R.

Concepts and roles may either be atomic (referred to by a concept name or a
role name) or composite. A composite concept is built from atomic concepts using
constructors. The expressiveness of a DL language depends on the constructors
allowed for building composite concepts or roles.

In this paper we use the ALC description logic language. The ALC concepts
are built from role names, concept names (atomic concepts), the top and bot-
tom concepts (! and ⊥) using the following constructors: intersection (C "D),
union (C#D), negation (¬C), value restriction (∀R.C) and existential restriction
(∃R.C). Here C and D denote concepts and R is a role name. For an introduction
to description logics we refer the reader to the first two chapters of [1].
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The basic inference tasks concerning the TBox can be reduced to the problem
of concept-satisfiability [1], where the goal is to determine if a given concept C is
satisfiable with respect to a given TBox. Concept-satisfiability is usually decided
using the tableau inference algorithm, which tries to build a model showing that
C is satisfiable.

ABox-inference tasks require both a TBox and an ABox. In this paper we
will deal with two ABox-reasoning problems: instance check and instance re-
trieval. In an instance check problem, a query-concept C and an individual i is
given. The question is whether C(i) is entailed by the TBox and the ABox. In
an instance retrieval problem the task is to retrieve all the instances of a query-
concept C, entailed by the TBox and the ABox. ABox-reasoning is usually also
based on the tableau-algorithm. To infer that an individual i is an instance of a
concept C, an indirect assumption ¬C(i) is added to the ABox, and the tableau-
algorithm is applied. If this reports inconsistency, i is proved to be an instance
of C.

Simple instance-retrieval problems can be easily solved using an appropri-
ate database query or Prolog goal. For example, the instances of the concept
Novel " ∃hasTranslationTo.! (novels translated to some language) can be easily
enumerated by an appropriate database query.

Open world assumption. Databases and Prolog use the the closed world assump-
tion where any object not known to be an instance of C is treated as an instance
of ¬C. No such assumption exists in DL inference tasks, which use the open world
assumption (OWA). When reasoning under OWA, one is interested in obtaining
statements which hold in all models of the knowledge base, i.e. those entailed by
the knowledge base.

hasChild(Iocaste,Oedipus) hasChild(Iocaste,Polyneikes)
hasChild(Oedipus,Polyneikes) hasChild(Polyneikes,Thersandros)
Patricide(Oedipus) ¬Patricide(Thersandros)

Fig. 1. The Iocaste ABox

A famous example of open world reasoning, presented in e.g. [1], is about
the family of Oedipus and Iocaste. Let us consider the ABox shown in Fig-
ure 1. We will look for the answer to the following instance retrieval query:
does a person exist in the ABox who has a patricide child, who in turn has a
non-patricide child? Let us formalise this question using the ALC DL language:

∃hasChild.(Patricide � ∃hasChild.¬Patricide) (1)

In the given ABox, Iocaste is an instance of this concept, in spite of the fact that
one cannot name the child who has the desired property. Solving this problem
requires case analysis: the child in question is either Polyneikes or Oedipus,
depending on whether Polyneikes is a Patricide or not.
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3 Possible Approaches

In the current stage of research, we address the instance check and instance
retrieval problems under the following restrictions. Reasoning is over an empty
TBox, and the ABox may only contain assertions of form C(a), where C is an
atomic or negated atomic concept1, and R(a, b), where R is a role name. The
query-concept is built using the constructors of the ALC language.

Several techniques have emerged for dealing with case analysis in ABox-
reasoning. An extreme case involves restrictions on the knowledge base to avoid
the need for case analysis. For example, [7] suggests a solution called the instance
store, where the ABox is stored externally, and is accessed in an efficient way.
However, the ABox does not allow any axioms involving roles. Because of this
restriction, most of the queries involving case analysis (like the Iocaste-query)
are not expressible in the proposed framework.

The normal approach involves running a tableau-based DL reasoner able to
answer ABox-inference questions, such as Racer. The main drawback of this
approach is that current description logic inference engines require processing
the whole ABox. Thus the instance retrieval tasks checks each instance name in
the ABox whether it belongs to the query-concept, or not. Since our goal is to
apply ABox-inference on a distributed knowledge base, where a large amount of
instances is present at different locations, this is not acceptable.

Performance is also a main issue: when dealing with large amounts of in-
stances, the traditional approach is slow and inefficient, even when TBox and
ABox optimisation techniques are applied [6].

We suggest therefore using a database or a set of Prolog facts for storing the
assertions of the ABox. In our solution, first the query is translated to an ABox-
independent query-plan, which is an executable Prolog-program. This program
generates all patterns that identify instances of the query-concept. In the second
step, we execute the query-plan on the ABox to find the solution for the given
instance check or instance retrieval problem.

For certain simple concepts there is a straightforward translation to Prolog.
For example, the query-concept (1) can be represented by the following Prolog-
clause:

instance(X) :- hasChild(X, Y), patricide(Y),

hasChild(Y, Z), notPatricide(Z). (2)

In this clause, notPatricide(Z) invokes the predicate listing all individuals
Z known to be non-patricide. However, this Prolog program does not return
Iocaste, because it does not perform case analysis.

Obviously, using the \+ operator (negation as failure) would not solve the
problem: when notPatricide(Z) is replaced by \+ patricide(Z), every in-
stance not known to be patricide would be treated as non-patricide, which is
incorrect.

1 The restricted form of C is implied by the fact that we do not deal with TBox-
reasoning in this paper.
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An option is to extend the Prolog program above to perform case analysis
using backtracking. Here, when testing whether an individual belongs to a con-
cept, and there is no definite answer, we create a choice point: we first answer
positively and then negatively. Subsequently – using some kind of meta program-
ming – we make sure that both execution branches succeed, thus carrying out a
case analysis. This approach, however, turns out to be unacceptably slow.

[8] suggests that the description logic knowledge base should be transformed
into disjunctive datalog formulas, and reasoning should be performed using res-
olution. The motivation and goals of this work are similar to ours. While [8]
allows much more general DL constructs (the SHIQ− language, TBox), its im-
plementation, KAON2 [9], is much slower then our approach, when run on simple
problems, see Section 7.

[5] uses a direct transformation of ALC concepts into Horn-clauses, and poses
some restrictions over the knowledge base, which disallow knowledge-base state-
ments requiring disjunctive reasoning. In contrast, instead of a direct transfor-
mation, our approach involves extracting a query-plan from query-concepts using
general resolution, and executing it in Prolog.

4 A Case Study

In Section 2 we have introduced an ABox describing the family of Iocaste and
the query-concept (1). We will now modify (2), the direct translation of this
query-concept, so that it performs case analysis. The resulting Prolog predicate
instance(X) will enumerate all the instances of the concept (1) for an arbitrary
ABox, represented by patricide/1, notPatricide/1 and hasChild/2 facts.
First, we will focus on the instance check problem.

Our first task is to determine if an individual is an instance of the query-
concept. Let us start by rewriting the Prolog clause (2) to its first order logic
equivalent. In this form, notPatricide(Z) is replaced by ¬Patricide(Z):

instance(X)∨¬hasChild(X, Y )∨¬Patricide(Y )∨¬hasChild(Y, Z)∨Patricide(Z) (3)

From the above clause and from the facts describing the ABox in Figure 1,
we can easily prove that Iocaste is an instance of the query-concept, using
general resolution. Such a proof is given in Figure 2. Here we denote the instances
Iocaste, Oedipus, Polyneikes and Thersandros by individual names i, o, p
and t, respectively. Clauses (fact1)–(fact6) represent the ABox, (clause1) is the
above definition of instance, while (clause2) is the negation of instance(i), the
fact to be proved.

Since instance literals occur only in (clause1) and (clause2), it is obvious that
these clauses have to be resolved with each other, giving the resolvent (resolv1).
We then eliminate three literals of (resolv1) using (fact1), (fact5) and (fact3)
giving the result (resolv4), which actually states the fact Patricide(p). Then we
resolve this fact with (resolv1) again, and subsequently eliminate the remaining
literals, arriving at the empty clause (resolv8).

In the proof in Figure 2, certain resolution steps used ABox facts, while
others did not. It seems worthwhile rearranging the proof, so that all the steps



Translating Description Logic Queries to Prolog 173

Clause name Clauses used Clause
(fact1) hasChild(i, o)
(fact2) hasChild(i, p)
(fact3) hasChild(o, p)
(fact4) hasChild(p, t)
(fact5) Patricide(o)
(fact6) ¬Patricide(t)

(clause1) instance(X)∨
¬hasChild(X, Y ) ∨ ¬Patricide(Y )∨
¬hasChild(Y, Z) ∨ Patricide(Z)

(clause2) ¬instance(i)

(resolv1) (clause1)(clause2) ¬hasChild(i, Y ) ∨ ¬Patricide(Y )∨
¬hasChild(Y, Z) ∨ Patricide(Z)

(resolv2) (resolv1)(fact1) ¬Patricide(o)∨
¬hasChild(o, Z) ∨ Patricide(Z)

(resolv3) (resolv2)(fact5) ¬hasChild(o, Z) ∨ Patricide(Z)
(resolv4) (resolv3)(fact3) Patricide(p)
(resolv5) (resolv4)(resolv1) ¬hasChild(i, p)∨

¬hasChild(p, Z) ∨ Patricide(Z)
(resolv6) (resolv5)(fact2) ¬hasChild(p, Z) ∨ Patricide(Z)
(resolv7) (resolv6)(fact4) Patricide(t)
(resolv8) (resolv7)(fact6) �

Fig. 2. The proof of the Iocaste-problem using resolution

independent of the ABox are made at the beginning. This can obviously be
carried out, as resolution is commutative and associative. In the case of our
resolution proof, this means that the second use of (resolv1) should be moved up
in the proof. Currently, this second use is against the fact (resolv4): Patricide(p).
This literal is introduced in (resolv1), so the rearrangement involves resolving
(resolv1) against itself, unifying the positive and negative Patricide literals. The
result of this resolution step is the following:

¬hasChild(i, P ) ∨ ¬hasChild(P, T ) ∨ Patricide(T ) ∨
¬hasChild(i, O) ∨ ¬Patricide(O) ∨ ¬hasChild(O,P ) (resolv2′)

In this clause we have renamed the variables in such a way that it is obvious
how the six literals above can be eliminated by the clauses (fact1)–(fact6).

We have thus shown that for our special query-concept and the corresponding
ABox, the instance check problem can be solved using a two-phase resolution
proof, where the first phase is independent of the ABox, and in the second phase,
we always resolve against a fact describing an ABox-assertion.

Let us now consider the case of an arbitrary ABox. As in Figure 2, the only
possible use of the ¬instance(i) negative fact is to resolve it against the definition
of the query-concept (clause1), resulting in clause (resolv1).

In the general case, an option is to finish the ABox-independent part of the
proof at this point, and to try finding ABox-facts to eliminate all the literals of
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(resolv1). Notice that (resolv1) is the same as the body of clause (3), with the
X = i substitution, so this alternative actually checks if i can be proven to be
an instance of the query-concept directly, without case analysis.

The second option is to resolve (resolv1) against itself, as we have done in the
previous example, producing (resolv2′), which is the next pattern to be looked
for in the ABox. Because our query-concept contains only a single pair of opposite
literals, resolving it with itself can only be done in a single way.2 Continuing the
ABox-independent resolution options, we get the following clause when resolving
(resolv1) against itself three times:

¬hasChild(i, P1) ∨ ¬hasChild(P1, T ) ∨ Patricide(T )
¬hasChild(i, P2) ∨ ¬hasChild(P2, P1) (resolv3′)
¬hasChild(i, O) ∨ ¬hasChild(O,P2) ∨ ¬Patricide(O)

Clauses (resolv1), (resolv2′), (resolv3′) etc. can be viewed as query-patterns for
searching the database-representation of the ABox. These can easily be visualised
as graphs, whose vertices correspond to objects, and edges denote roles. Each
vertex is labelled with a set of concepts it is expected to belong to, while the
edges are labelled with role-names. The first three query-patterns for the Iocaste-
problem are shown in Figure 3 (to save space, the label hasChild is omitted from
the edges, and the concept Patricide is abbreviated by P ).
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Fig. 3. The query-pattern using n instances of the clause (resolv1)

In this simple example the repetitive patterns can be captured by rewriting
(resolv1) to the following Prolog clause:

patricide(Z) :- hasChild(i, Y), hasChild(Y, Z), patricide(Y).

This clause, together with (2), makes a Prolog program which correctly runs the
instance(i) query, for an arbitrary ABox represented by the patricide and
notPatricide facts. Note however, that now the clauses for the patricide/1
2 If we had more occurrences of Patricide or ¬Patricide literals or we had other

opposite literals in the query-concept, we would have to explore more patterns.
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predicate come in part from the ABox and in part from the query. To avoid this,
we propose to introduce a new recursive predicate dPatricide/1 (deduced to be
Patricide). This results in the Prolog program shown below. Since the program
generates all possible patterns needed for answering the inference problem, this
program will be considered the query-plan for the concept (1).

instance(i) :- hasChild(i, Y), hasChild(Y, Z),
notPatricide(Z), dPatricide(Y).

dPatricide(Z) :- patricide(Z).
dPatricide(Z) :- hasChild(i, Y), hasChild(Y, Z),

dPatricide(Y).

This program is specialised to solve the instance check problem for a given
individual i. In order to solve the more general instance retrieval problem, we
replace every occurrence of the instance name i by a logic variable X. The second
dPatricide clause however does not contain any reference to X (i.e. we do not
know in dPatricide the instance all the query-paths start with), so X has to be
passed to the predicate dPatricide increasing its arity to two, as shown below

instance(X) :- hasChild(X, Y), hasChild(Y, Z),
notPatricide(Z), dPatricide(Y, X).

dPatricide(Z, _) :- patricide(Z).
dPatricide(Z, X) :- hasChild(X, Y), hasChild(Y, Z),

dPatricide(Y, X).

Executing the above query-plan on some ABoxes may lead to nontermination.
This can occur when the ABox graph contains loops so that after one ore more
iterations the dPatricide procedure calls itself with the same arguments as
earlier. In order to avoid infinite loops, we need to modify the Prolog code, or
use a Prolog system which supports tabling, e.g. XSB-Prolog [12].

Note that (resolv1) could be used to derive a Prolog clause dnotPatricide
(deduced to be non-Patricide):

dnotPatricide(Z, _) :- notPatricide(Z).
dnotPatricide(Y, X) :- hasChild(X, Y), hasChild(Y, Z),

dnotPatricide(Z, X).

If such a clause is introduced, the notPatricide call in the body of instance
is replaced by dnotPatricide. However, in this simple case of just two opposite
literals being present in the query, one of the dPatricide and dnotPatricide
predicates is sufficient, as any resolution proof can be transformed to a proof
with the Prolog selection rule, which uses just one of these two predicates. Note
that this does not hold in the general case.

5 Query-Plans for Tree-Concepts

In this section we outline the process of translating instance retrieval problems
into executable query-plans, for the special case of so called tree-concepts. Such
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concepts are built using the intersection, existential restriction and atomic nega-
tion constructors only.

It is convenient to view tree-concepts as labelled graphs (actually trees) of
the same kind as introduced in Figure 3. To transform a tree-concept C =
C1 " . . . " Cn (n ≥ 1) into a graph rooted at vertex x, for each i, 1 ≤ i ≤ n do:

– if Ci is a possibly negated atomic concept, then add Ci to the label of x;
– otherwise Ci = ∃R.D. Create a new vertex y, add to the graph an edge from

x to y with the label R, and recursively transform D into a graph rooted
at y.

Note that the graph of a tree-concept is actually its simplest query pattern, i.e.
the one not requiring case analysis. For example, the graph of concept (1) is the
leftmost pattern in Figure 3.

We now show how to transform the graph of a tree-concept into a clause defin-
ing the given concept using first order logic. We assign distinct variables to the
vertices of the tree-concept. The clause head is the positive literal instance(X),
where X is the variable assigned to the root of the tree. We then include body
goals, i.e. negative literals of form ¬R(U, V ), for each edge U → V which has R
as its label3. Finally, for each possibly negated atomic concept C in the label of
vertex Y , we include the literal ¬C(Y ). For example, if we apply this procedure
to the tree-concept (1), we get the clause (3).

It is obvious that the clause thus constructed captures the semantics of the
tree-concept in question. Therefore – repeating the argumentation of our case
study in Section 4 – this clause can be used to construct a proof that an in-
stance i belongs to the concept C. Such a proof uses the following clauses: (a)
¬instance(i), (b) the clause defining the concept C, and (c) the ABox facts.
One has to start the ABox-independent part of the proof by first resolving (a)
and (b), as only these contain instance literals. Let us call the resolvent of
these two clauses the query-clause. The only way to proceed is to resolve the
query-clause against itself n times, n = 0, 1, . . . Each such resolution step ob-
viously requires the presence of ¬A(X) and A(Y ) literals in the query-clause.
Such atomic concepts A, which occur both in negated and non-negated form in
the query-concept, will be called bipolar concepts.

In the case study of the Iocaste-concept (1) we had a single bipolar atomic
concept, Patricide, with just one positive and one negative literal. In the general
case there are two new issues. First, because of multiple literals, we have to build
two Prolog predicates for each bipolar concept A, one for “deducing” A and
another for “deducing” ¬A (cf. the dPatricide and dnotPatricide predicates
of Section 4). The second problem is related to factoring : two identical literals
in the resolvent have to be replaced by a single one. This problem can be solved
using ancestor resolution [10], which can be easily implemented in Prolog by
an additional argument in each predicate, which stores the list of ancestors,
analogously to the techniques described in [11]. As an example let us consider
the following concept:
3 More precisely, U and V are the variables assigned to the end points of the edge.
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∃R.(A " ∃R.(¬A " ∃R.(A " ∃R.¬A)))) (4)

The Prolog program corresponding to this query-concept is displayed below. To
save space, only the first clause for dnotA is shown.

instance(X) :- r(X,Y), r(Y,Z), r(Z,U), r(U,V),
dA(Y, X, [dA(Y)]), dnotA(Z, X, [dnotA(Z)]),
dA(U, X, [dA(U)]), dnotA(V, X, [dnotA(V)]).

dA(Z, _, _) :- a(Z). (c1)
dA(Z, _, Anc) :- memberchk(dnotA(Z), Anc), !. (c2)
dA(Z, _, [_|Anc]) :- memberchk(dA(Z), Anc), !, fail. (c3)
dA(Z, X, Anc) :- r(X,Y), r(Y,Z), r(Z,U), r(U,V),

dA(Y, X, [dA(Y)|Anc]), dA(U, X, [dA(U)|Anc]),
dnotA(V, X, [dnotA(V)|Anc]).

dA(V, X, Anc) :- r(X,Y), r(Y,Z), r(Z,U), r(U,V),
dA(Y, X, [dA(Y)|Anc]), dA(U, X, [dA(U)|Anc]),
dnotA(Z, X, [dnotA(Z)|Anc]).

dnotA(Z, _, _) :- notA(Z).
(...)

In general, for each bipolar atomic concept A we create two Prolog predi-
cates: dA/3 (deduced to be A) and dnotA/3 (deduced to be ¬A). The second
argument, as in the case study, stores the root of the pattern, while the third
contains the ancestor list. The first clause of these predicates is a simple re-
naming, as exemplified by (c1) above. The second clause, see (c2), caters for
ancestor resolution, while the optional third clause, (c3), assures termination in
the absence of tabling. The subsequent clauses are the contrapositives of the
query-clause, which use one of the literals as the head, and the remaining ones
as the body.

This translation scheme can be viewed as a much simplified special case of
Stickel’s Prolog Technology Theorem Prover (PTTP) approach [11]. If there are
n occurrences of m distinct bipolar concepts, then 2m predicates with the total
of 6m+n clauses are generated. Since the size of the clauses is is proportional to
the size of the query-concept, we can say that the complexity of the tree-concept
translation scheme is quadratic with the query-concept size.

6 Query-Plans for Arbitrary ALC Concepts

In this section we discuss how to create query patterns from arbitrary ALC
concept expressions. This is done in two phases. First we transform the concept
into a union of tree-concepts, in such a way that the deducible instances of the
union are the same as those of the original concept. Next, we show how to
transform a union of tree-concepts to Prolog code performing instance retrieval.

We start the first transformation with some simple steps:

1. Negation normal form (NNF): transform the concept to NNF (negation ap-
pears only in front of atomic concepts, as described e.g. in [1]).
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2. ∀- and ∃-normalisation: apply these two transformations wherever possible:

∀R.(C "D) � ∀R.C " ∀R.D and ∃R.(C #D) � ∃R.C # ∃R.D

3. Disjunctive normal form (DNF): transform all concepts C in subconcepts of
form ∀R.C, and the query-concept itself to disjunctive normal form.

As a result of these transformations, the union-operator can only appear at
the top level of the concept and inside ∀-concepts.

Let us consider an arbitrary concept of form ∀R.C, where C �= !. Notice
that in ALC instance retrieval with respect to an empty TBox, no object can be
inferred to be an instance of this concept.4 Thus the set of inferable instances of
such a ∀R.C concept is empty.

However, if a ∀-concept appears in a composite expression, it may be incorrect
to use this assumption. For instance, the concept ∀R.C # ∃R.¬C is obviously
equivalent to !. At the same time, if the assumption that the first union member
generates no instance is used to reduce the instance retrieval problem to that of
∃R.¬C, one clearly gets an incorrect result.

This anomaly is caused by the fact that instances of a concept can be inferred
through case analysis. If we have a concept containing ∀R.C, as well as its
negation, ∃R.¬C then one can argue that each individual should belong to either
the first or the second subconcept. Any statement true under both of these
assumptions is universally true.

For instance, in the case of the concept F = (∀R.C "D) # (∃R.¬C "E), we
can use case analysis to show that D " E � F , and so F and F ′ = F # (D "
E) are equivalent. Before dealing with ∀-concepts we will therefore apply the
transformation F � F ′.

In general, this transformation step is the following:

4. Extension with subsumed concepts: Let us view the concept union and in-
tersection operators as taking sets of concepts as their argument. We still
write these operators in infix notation, and by F = C " D we mean that
intersection F can be split into two sub-intersections C and D.
Assume that the concept to be handled has a union subconcept of form
U = (C1 "D1) # . . . # (Cn "Dn) # . . ., where

C1 # . . . # Cn ≡ ! (5)

In this case we replace U by U # (D1 " . . . "Dn). We carry out this trans-
formation in all possible ways. Finding the subconcepts satisfying (5) can
be delegated to a TBox reasoner, such as Racer. We believe this will not
be a bottleneck, as this is a “compile time” activity and the concepts to be
retrieved are not expected to be very large.

This way we extend each union subconcept U to include all concept expres-
sions which can be inferred to be subsumed by U . Now we turn to the elimination
4 If the TBox was not empty and contained an axiom A � ∀R.C, every instance of A

would also be an (inferable) instance of ∀R.C.
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of ∀-subconcepts. To support this transformation we introduce a special concept
nil, which does not have any inferred instances. Note that any two occurrences
of nil are different concepts, because their associated sets of instances may be
different. It is also important to note that, from model theoretical viewpoint,
nilI is not the empty set, so nil is different from ⊥.

The last transformation step is thus the following:

5. ∀-elimination: Substitute all occurrences of the concept ∀R.C by nil. Apply
the the following equalities to propagate nil values:

nil " C = nil nil # ⊥ = nil ∃R.nil = nil
nil " ⊥ = ⊥ nil # C = C ∀R.nil = nil

Note that, after finishing the transformation, either the whole query-concept
becomes nil, or no occurrences of nil remain within it.

After the five transformations have been carried out, we get a concept of
form C = C1 # C2 # · · · # Cn, where each Ci is a tree-concept. We now apply
the technique described in Section 5 to each such tree-concept to produce Prolog
clauses and then merge these to produce the program for the union concept. It
is important to note that there is a single namespace: for each bipolar atomic
concept A occurring in C there is a single dA and a single dnotA predicate in the
program. If A occurs in, say both Ci and Cj , then both these union members
contribute clauses to the dA and dnotA predicates. Obviously there is a single
batch of initial clauses (cf. (c1)–(c3) in the Prolog code for concept (4)) for each
such predicate.

As an example consider the following union of two tree-concepts, very similar
to the Iocaste query-concept:

∃R1.(P " ∃R1.¬P ) # ∃R2.(P " ∃R2.¬P ), (6)

The Prolog code for this concept is shown below. Note that we have omitted
the dnotP predicate, for reasons similar to those outlined at the end of the case
study of Section 4.

instance(X) :- r1(X, Y), r1(Y, Z), notP(Z), dP(Y, X).
instance(X) :- r2(X, Y), r2(Y, Z), notP(Z), dP(Y, X).

dP(X, _) :- p(X).
dP(Z, X) :- r1(X, Y), r1(Y, Z), dP(Y, X).
dP(Z, X) :- r2(X, Y), r2(Y, Z), dP(Y, X).

The concept transformation steps described here can lead to exponential size
increase in the worst case, because of the transformation to disjunctive normal
form. Similarly, finding all the solutions of (5) may require exponential time.
However we believe that this worst case behaviour is not typical. The complexity
of the second phase, the generation of Prolog code from a union of tree-concepts,
is quadratic (in the size of the concept), as outlined at the end of Section 5.
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7 Evaluation

We have evaluated our solution by running the Prolog programs described in
Section 4 using two Prolog systems. The corresponding instance retrieval prob-
lem was also run using other reasoners. We used Racer, which is, according
to our knowledge, the fastest available tableau based ABox reasoner. We also
evaluated the KAON2 [9] and the PTTP-based PROTEIN [2] systems. The tests
were run under Racer 1.7.16, SICStus Prolog 3.12.0, XSB Prolog 2.7.1, KAON2
release 2005-10-17 and PROTEIN 2.33 on a Compaq Presario 2805 (1,4GHz In-
tel mobile CPU, 512MB RAM, Linux with 2.6.19 kernel). The results are shown
in Figure 4. Each line of the table corresponds to a sample ABox. These ABoxes
were generated randomly and contain at least one subgraph matching the Iocaste
pattern of Figure 3.

The first column shows the size of the Iocaste pattern in the given ABox,
which corresponds to the parameter n in Figure 3. The second and third columns
show the number of the role and concept assertions present in the ABoxes. The
fourth column contains the number of those irrelevant nodes which we added to
the ABoxes as „noise”. We did this in order to be able to measure how sensitive
the inference engines are to this kind of ABox modification. By using irrelevant
nodes we actually simulate real life situations, because in a database lookup
it is rarely the case that the search pattern matches the whole content of the
database.

pattern role concept noise Racer SICStus XSB KAON2 PROTEIN
size (n) assertions assertions instances

2 4 2 0 <0.001 <0.001 <0.001 0.049 0.030
10 20 2 0 <0.001 <0.001 <0.001 0.569 0.180
20 40 2 0 <0.001 <0.001 <0.001 - 99.110

100 200 2 0 0.500 0.002 0.002 - -
500 1000 2 0 9.970 0.053 0.048 - -

1000 2000 2 0 50.600 0.210 0.165 - -
2 26 10 8 <0.001 <0.001 <0.001 0.049 0.050
2 48 11 16 0.050 <0.001 <0.001 0.047 0.060
2 233 64 76 0.100 <0.001 <0.001 0.051 0.130
2 555 140 196 0.340 <0.001 <0.001 0.048 0.210
2 4743 816 1196 11.930 <0.001 <0.001 0.052 5.290
2 32126 5373 7796 - <0.001 <0.001 4.729 203.360

Fig. 4. Evaluation and comparison of our approach

The remaining five columns of Figure 4 show the times needed for enumer-
ating all the instances of an Iocaste pattern in different software environments
excluding loading and processing time. All values are given in seconds. For the
test cases with very short runtime, we ran the programs multiple times. Timeout
(when no result was returned in 10 minutes) is denoted by - (dash).
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The total number of instances in each ABox is n + 2 + noise. The number
of concept assertions is always less than the number of instances, as there are
instances not belonging to any concepts, cf. Polyneikes in Figure 1.

The first six test cases are “clean” in that they contain nothing more but the
Iocaste patterns themselves. In these there are only two concept assertions: one
node belongs to the concept Patricide, and another to the concept ¬Patricide.

The results show that Racer scales quadratically when the pattern size
is increased. KAON2 and PROTEIN fare much worse: they can only handle
the simplest test cases. It can be seen that our program is several magnitudes
faster than the others, including Racer: all of the tests were processed within
a fraction of a second. Note, that our present solution is also quadratic in the
number of individuals. This is however due to the fact that the Prolog code is not
optimised. If we reorder the body of the dPatricide/2 clause as shown below5,
the runtime becomes linear (we do not show the corresponding runtimes):

dPatricide(Z, X) :- hasChild(Y, Z), hasChild(X, Y),
dPatricide(Y, X).

In the second group of test cases we picked the smallest Iocaste pattern, then
we added increasing amounts of irrelevant data to the ABoxes.

We conclude that for a large amount of irrelevant data Racer becomes un-
acceptably slow. In contrast, our solution is practically insensitive to the „noise”,
no matter how much we add. KAON2 and PROTEIN also seem to handle the
irrelevant ABox information nicely, although in the big test cases they slow down.

8 Summary and Future Work

We have shown how to transform an arbitrary description logic concept formu-
lated in the ALC language to a Prolog program performing the instance retrieval
problem. We have handled case analysis, necessitated by the open world assump-
tion, by systematically generating all patterns that are amenable to case anal-
ysis. At the same time we have shown that the Prolog program produced can
be viewed as the ABox-independent part of a generic resolution proof. We have
also evaluated our approach, showing that it can be faster than the traditional
tableau-based approach by several magnitudes.

We view the current results as a first step. We plan to extend our algorithm
to more elaborate DL languages (such as SHIQ) and to allow TBox axioms as
well. We will also work on the optimisation of the query plan, considering the
use of target language specific elements (like cut, indexing, etc. in Prolog) to
make the execution of the query plan more efficient.
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Abstract. We study the problem of efficient, scalable set-sharing analy-
sis of logic programs. We use the idea of representing sharing information
as a pair of abstract substitutions, one of which is a worst-case sharing
representation called a clique set, which was previously proposed for the
case of inferring pair-sharing. We use the clique-set representation for
(1) inferring actual set-sharing information, and (2) analysis within a
top-down framework. In particular, we define the new abstract functions
required by standard top-down analyses, both for sharing alone and also
for the case of including freeness in addition to sharing. We use cliques
both as an alternative representation and as widening, defining several
widening operators. Our experimental evaluation supports the conclusion
that, for inferring set-sharing, as it was the case for inferring pair-sharing,
precision losses are limited, while useful efficiency gains are obtained. We
also derive useful conclusions regarding the interactions between thresh-
olds, precision, efficiency and cost of widening. At the limit, the clique-set
representation allowed analyzing some programs that exceeded memory
capacity using classical sharing representations.

1 Introduction

In static analysis of logic programs the tracking of variables shared among terms
is essential. Arguably, the most accurate abstract domain defined for tracking
sharing is the so called Sharing domain [JL92,MH92], which represents variable
occurrences, i.e., the possible occurrences of run-time variables within the terms
to which program variables will be bound. In this paper we study an alternative
representation for this domain.

Example 1. Let V = {x, y, z} be a set of variables of interest. A substitution such
as {x/f(u1, u2, v1, v2, w), y/g(v1, v2, w), z/g(w, w)} will be abstracted in Sharing
as {x, xy, xyz}.1 Sharing group x in the abstraction represents the occurrence of
run-time variables u1 and u2 in the concrete substitution, xy represents v1 and
v2, and xyz represents w. Note that the number of (occurrences of) run-time
variables shared is abstracted away.
1 To simplify notation, we denote a sharing group (a set of variables representing

sharing) by the concatenation of its variables, e.g., xyz is {x, y, z}.

P. Van Hentenryck (Ed.): PADL 2006, LNCS 3819, pp. 183–198, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Sharing analysis has been used for inferring several interesting properties of
programs; most notably (but not only), variable and goal independence. Several
program variables are said to be independent if the terms they are bound to do
not have (run-time) variables in common. Variable independence is the counter-
part of sharing: program variables share when the terms they are bound to do
have run-time variables in common. When we are talking of only two variables
then we refer to pair-sharing, and when we track relations among more than
two variables we refer to set-sharing. Sharing abstract domains are used to infer
possible sharing, i.e., the possibility that shared variables exist, and thus, in the
absence of such possibility, definite information about independence.

Example 2. Let V = {x, y, z} be the variables of interest. A Sharing abstract
substitution such as {x, y, z} (which denotes the set of the singleton sets con-
taining each variable) represents that all three variables are independent.

The Sharing domain has deserved a lot of attention in the literature in the
past. It has been enhanced in several ways [Fil94, ZBH99]. It has also been ex-
tended with other kinds of information, the most relevant of which being freeness
and linearity [JL92,CDFB96, HZB04], but also for example information about
term structure [KS94, BCM94, MSJB95]. Its combination with other abstract
domains has also been studied [CMB+93, Fec96]. In particular, in [ZBH99] an
alternative representation for Sharing is proposed for the non-redundant do-
main of [BHZ02] and this representation is thoroughly studied for inferring pair-
sharing. A new component is added to abstract substitutions that represents sets
of variables, the powerset of which would have been part of the original abstract
substitution. Such sets are called cliques.

Example 3. Let V be as above. Consider the abstraction {x, xy, xyz, xz, y, yz, z},
i.e., the powerset of V (without the empty set). Such an abstraction conveys
no information: there might be run-time variables shared by any pair of the
three program variables, by the three of them, or not shared at all. However,
abstractions such as this one are expensive to process during analysis: they
penalize efficiency for no benefit at all. The clique that will convey the same
information is simply the set V .

A clique is thus a compact representation for a piece of sharing which in
fact does not convey any useful information. The precision and efficiency of
using cliques for the case of inferring pair-sharing were reported in [ZBH99].
In [Zaf01] cliques were incorporated into the original Sharing domain, but preci-
sion and efficiency are again studied for the case of inferring pair-sharing. Here,
we are interested in studying the substantially different case of inferring set-
sharing. Another important difference with previous work is that we develop
the analysis for a top-down framework. This requires the definition of additional
and non-trivial abstract functions in the domain. Such functions were not de-
fined in [ZBH99, Zaf01], since bottom-up analyses were used there. We use the
PLAI/CiaoPP framework [HBPLG99], which is an efficient implementation of
a top-down analyzer using the fixpoint algorithms and optimizations described
in [MH90, MH92, HPMS00].
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The rest of the paper proceeds as follows. Notation and preliminaries are
presented in Section 2, together with the representation based on cliques and
the clique-domains for set-sharing and set-sharing with freeness. In Section 3
the required functions for top-down analysis are defined. In Section 4 we present
an algorithm for detecting cliques, in Section 5 we introduce the use of the
representation based on cliques as widening, and in Section 6 our experimental
evaluation of the proposed analyses. Finally, Section 7 concludes.

2 Preliminaries

Let ℘(S) denote the powerset of set S, and ℘0(S) denote the proper powerset of
set S, i.e., ℘0(S) = ℘(S) \ {∅}. Let also |S| denote the cardinality of a set S.

Let V be a set of variables of interest; e.g., the variables of a program. A
sharing group is a set of variables of interest, which represents the possible shar-
ing among them (i.e., that they might be bound to terms which have a common
variable). Let SG = ℘0(V ) be the set of all sharing groups. A sharing set is a set
of sharing groups. The Sharing domain is SH = ℘(SG), the set of all sharing
sets.

Let F and P be sets of ranked (i.e., with a given arity) functors of interest;
e.g., the function symbols and the predicate symbols of a program. We will use
Term to denote the set of terms constructed from V and F ∪ P . Although
somehow unorthodox, this will allow us to simply write g ∈ Term whether g is
a term or a predicate atom, since all our operations apply equally well to both
classes of syntactic objects. We will denote t̂ the set of variables of t ∈ Term.
For two elements s ∈ Term and t ∈ Term, ŝt = ŝ ∪ t̂.

For two elements s1 ∈ SH , s2 ∈ SH , let s1×∪ s2 be their binary union, i.e.,
the result of applying union to each pair in their Cartesian product s1 × s2. Let
also s∗1 be the star union of s1, i.e., its closure under union. Given terms s and
t, and sh ∈ SH , we denote by sht the set of sets in sh which have non-empty
intersection with t̂, the set of variables of t. By extension, in shst we use ŝt as
the set of variables. Also, sht is the complement of sht, i.e., sh \ sht.

Analysis of a program proceeds by abstractly solving unification equations
of the form t1 = t2, t1 ∈ Term, t2 ∈ Term. Let solve(t1 = t2) denote the
solved form of unification equation t1 = t2. The results of analysis are abstract
substitutions which approximate the concrete substitutions that may occur dur-
ing execution of the program. Let U be a denumerable set of variables (e.g., the
variables that may occur during execution of a program). Concrete substitutions
that occur during execution are mappings from V to the set of terms constructed
from U ∪ V and F . Abstract substitutions are sharing sets.

2.1 Clique Domains

When a sharing set sh ∈ SH includes the proper powerset of some set C of
variables, the representation can be made more compact by using C to represent
the same sharing that its powerset represents in the sharing set sh [ZBH99]. A
clique is, thus, a set of variables of interest, much the same as a sharing group,
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but a clique C represents all the sharing groups in ℘0(C). For a clique C, we
will use ↓C = ℘0(C). Note that ↓C denotes all the sharing that is implicitly
represented in a clique C. A clique set is a set of cliques. Let CL = SH denote
the set of all clique sets. For a clique set cl ∈ CL we define ↓∪cl = ∪{↓C | C ∈ cl}.
Note that ↓∪cl denotes all the sharing that is implicitly represented in a clique
set cl. For a pair (cl, sh) of a clique set cl and a sharing set sh, the sharing that
the pair represents is ↓∪cl ∪ sh.

The Clique-Sharing domain is SHw = {(cl, sh) | cl ∈ CL, sh ∈ SH}, i.e., the
set of pairs of a clique set and a sharing set [ZBH99]. An abstract unification
operation amguw is defined in [Zaf01] which uses a function rel : ℘(V )×CL −→
CL (complement of rel), defined as:

rel(S, cl) = { C \ S | C ∈ cl } \ {∅}

which approximates the sharing not related to variables in S. We have used an
equivalent definition of amguw to the one in [Zaf01] (see [BNH05]).

Freeness can be introduced to the Clique-Sharing domain in the usual way
[MH91], by including a component which tracks the variables which are known
to be free. The Clique-Shfr domain is thus SHFw = SHw × V . A method
to define an abstract unification function for SHw with freeness and linearity
is outlined in [Zaf01]. We have used an abstract unification operation amgusf

for SHw with freeness which is a simplification of the corresponding operation
which results from the application of such method.

3 Abstract Functions Required by Top-Down Analysis

In top-down frameworks, the analysis of a clause Head:-Body proceeds as fol-
lows. There is a goal Goal for the predicate of Head, which is called in a context
represented by abstract substitution Call on a set of variables (distinct from

ˆHead ∪ ˆBody) which contains those of Goal. Then the success of Goal by exe-
cuting the above clause is represented by abstract substitution Succ given by:

Succ = extend(Call, Goal, Prime)
Prime = exit2succ(project(Head, Exit), Goal, Head)
Exit = entry2exit(Body, Entry)
Entry = augment(F, call2entry(Proj, Goal, Head))
Proj = project(Goal, Call)

where F is any term with the variables ˆBody \ ˆHead. Function project approxi-
mates the projection of a substitution on the variables of a given term. Function
augment extends the domain of an abstract substitution to the variables of a
given term, which are assumed to be new fresh variables. Function entry2exit is
given by the framework, and basically traverses the body of a clause, analyzing
each atom in turn. The other three domain-dependent abstract functions which
are essential are:
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– call2entry(Proj, Goal, Head) yields a substitution on the variables of Head
which represents the effects of unification Goal = Head in a context repre-
sented by substitution Proj on the variables of Goal.

– exit2succ(Exit′, Goal, Head) yields a substitution on the variables of Goal
which represents the effects of unification Goal = Head in a context repre-
sented by substitution Exit′ on the variables of Head.

– extend(Call, Goal, Prime) yields a substitution for the success of Goal when
it is called in a context represented by substitution Call on a set of variables
which contains those of Goal, given that in such context the success of Goal
is already represented by substitution Prime on the variables of Goal. The
domain of the resulting substitution is the same as the domain of Call.

In fact, the first two can be defined from the abstract unification operation
amgu. The third one, however, is specific to the top-down framework and needs
to be defined specifically for a given domain.

Given an operation amgu(x = t, ASub) of abstract unification for equation
x = t, x ∈ V , t ∈ Term, and ASub an abstract substitution (the domain of which
contains variables t̂∪ {x}), abstract unification for equation t1 = t2, t1 ∈ Term,
t2 ∈ Term, is given by:

unify(ASub, t1, t2) = project(t1, Amgu(solve(t1 = t2), augment(t1, ASub)))

Amgu(Eq, ASub) =
{

ASub if Eq = ∅
Amgu(Eq′, amgu(x = t, ASub)) if Eq = Eq′ ∪ {x = t}

Functions call2entry and exit2succ can defined as follows:

call2entry(ASub, Goal, Head) = unify(ASub, Head, Goal)
exit2succ(ASub, Goal, Head) = unify(ASub, Goal, Head)

However, extend, together with project, augment, and amgu are all domain-
dependent. In the Sharing domain, extend [MH92], project, and augment are
defined as follows:

extend(Call, g, Prime) = Callg ∪ { s | s ∈ Call∗g, (s ∩ ĝ) ∈ Prime }
project(g, sh) = {s ∩ ĝ | s ∈ sh} \ {∅}
augment(g, sh) = sh ∪ {{x} | x ∈ ĝ}

In the Shfr domain, these functions are defined as follows [MH91]:

projectf (g, (sh, f)) = (project(g, sh), f ∩ ĝ)
augmentf(g, (sh, f)) = (augment(g, sh), f ∪ ĝ)
extendf ((sh1, f1), g, (sh2, f2)) = (extend(sh1, g, sh2), f ′)
f ′ = f2 ∪ {x | x ∈ (f1 \ ĝ), ((∪sh′

x) ∩ ĝ) ⊆ f2}

3.1 Abstract Functions for Top-Down Analysis in the
Clique-Domains

Functions call2entry and exit2succ have usually been defined in a way which is
specific to the domain and for top-down analysis (see, e.g., [MH92] for a definition
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for set-sharing). We have chosen instead to present here a formalization of a way
to use the amgu in top-down frameworks. Thus, the definitions of call2entry
and exit2succ based on amgu given above. Our intuition in doing this is that
the results should be (more) comparable to goal-dependent bottom-up analyses,
where amgu is used directly.

Note, however, that such definitions imply a possible loss of precision. Using
amgu in the way explained above does not allow to take advantage of the fact
that all variables in the head of the clause being entered during analysis are free.
Alternative definitions of call2entry can be obtained that improve precision
from this observation.2 The overall effect would be equivalent to using the amgu
function for the Sharing domain coupled with freeness, with the head variables
as free variables, and then throwing out the freeness component of the result.
For example, for the Clique-Sharing domain a function call2entrys that takes
advantage of freeness information can be defined as follows, where unifysf is
the version of unify that uses amgusf :

call2entrys(ASub, Goal, Head) = ASub′

where (ASub′, F ree) = unifyf((ASub, ∅), Head, Goal)

However, for the reasons mentioned above, we have used the definitions of
call2entry and exit2succ based on amgu. The rest of the top-down functions
are defined below. For the Clique-Sharing domain, let g ∈ Term, and (cl, sh) ∈
SHw. Functions projects and augments are defined as follows:

projects(g, (cl, sh)) = (project(g, cl), project(g, sh))
augments(g, (cl, sh)) = (cl, augment(g, sh))

Function extends(Call, g, Prime) is defined as follows. Let Call = (cl1, sh1)
and Prime = (cl2, sh2). Let normalize be a function which normalizes a pair
(cl, sh) so that no powersets occur in sh (all are “transferred” to cliques in cl;
Section 4 presents a possible implementation of such a function). Let Prime be
already normalized, and:

(cl′, sh′) = normalize((cl1∗g ∪ (cl1∗g ×∪ sh1
∗
g), sh1

∗
g))

The following two functions lift the classical extend [MH92] respectively to
the cases of the two clique sets (clique groups of the Call allowed by the clique
component of the Prime) and of the two sharing sets (sharing groups belonging
to the Call allowed by the sharing part of the Prime):

extsh(sh1, g, sh2) = sh1g ∪ { s | s ∈ sh′, (s ∩ ĝ) ∈ sh2 }
extcl(cl1, g, cl2) = rel(ĝ, cl1) ∪ { (s′ ∩ s) ∪ (s′ \ ĝ) | s′ ∈ cl′, s ∈ cl2 }

The following two functions account respectively for the sharing sets belonging
to the clique component of the Call allowed by the sharing part of the Prime,

2 For example, one such definition (developed independently) can be found in [AS05].
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and the sharing sets of the sharing component of the Call allowed by the clique
part of the Prime:

clsh(cl′, g, sh2) = { s | s ⊆ c ∈ cl′, (s ∩ ĝ) ∈ sh2 }
shcl(sh′, g, cl2) = { s | s ∈ sh′, (s ∩ ĝ) ⊆ c ∈ cl2 }

The extend function for the Clique-Sharing domain is thus:

extends((cl1, sh1), g, (cl2, sh2)) =
( extcl(cl1, g, cl2)
, extsh(sh1, g, sh2) ∪ clsh(cl′, g, sh2) ∪ shcl(sh′, g, cl2) )

Example 4. Let Call = (cl1, sh1) = ({xyz}, {u, v}), Prime = (cl2, sh2) =
({x}, {uv}), and ĝ = {x, u, v}. Then we have (cl′, sh′) = ({xyzuv}, ∅). The
extends function is computed as follows:

extsh(sh1, g, sh2) = extsh({u, v}, g, {uv}) = ∅
extcl(cl1, g, cl2) = extcl({xyz}, g, {x}) = {xyz, yz}
clsh(cl′, g, sh2) = clsh({xyzuv}, g, {uv}) = {yzuv, yuv, zuv, uv}
shcl(sh′, g, cl2) = shcl(∅, g, {x}) = ∅

Thus, extends(Call, g, Prime) = ({xyz, yz}, {yzuv, yuv, zuv, uv}), which after
regularization yields ({xyz}, {yzuv, yuv, zuv, uv}).

Note how the result is less precise than the exact result ({xyz}, {uv}). This
is due to overestimation of sharing implied by the cliques; in particular, for
the case of extend, overestimations stem mainly from the necessary worst-case
assumption given by (cl′, sh′), which is then “pruned” as much as possible by
the functions defined above. The resulting operation, however, is correct: the
sharing implied by extends on two abstract substitutions Call and Prime is
an over-approximation of that given by extend on the sharing set substitutions
corresponding to Call and Prime.

Theorem 1. Let Call ∈ SHw, Prime ∈ SHw, and g ∈ Term, such that the
conditions for the extend function are satisfied. Let Call = (cl1, sh1), Prime =
(cl2, sh2), and extends(Call, g, Prime) = (cl′, sh′). Then

( ↓∪cl′ ∪ sh′) ⊇ extend( ↓∪cl1 ∪ sh1, g, ↓∪cl2 ∪ sh2) .

For the Clique-Shfr domain, let g ∈ Term, and s ∈ SHFw, s = ((cl, sh), f).
Functions projectsf and augmentsf are defined as follows:

projectsf (g, s) = (projects(g, (cl, sh)), f ∩ ĝ)
augmentsf(g, s) = (augments(g, (cl, sh)), f ∪ ĝ)

Function extendsf (Call, g, Prime) is defined as follows. Let Call=((cl1, sh1), f1)
and Prime = ((cl2, sh2), f2), extendsf (Call, g, Prime) = ((cl′, sh′), f ′), where:

(cl′, sh′) = extends((cl1, sh1), g, (cl2, sh2))
f ′ = f2 ∪ {x | x ∈ (f1 \ ĝ), ((∪(sh′

x ∪ cl′x)) ∩ ĝ) ⊆ f2}
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Operation extendsf is correct: it gives safe approximations. The resulting
sharing it implies when applied on two abstract substitutions Call and Prime is
no less than that given by extendf on the sharing set substitutions corresponding
to Call and Prime; and the freeness is no more than what extendf would have
computed.

Theorem 2. Let Call ∈ SHFw, Prime ∈ SHFw, and g ∈ Term, such that
the conditions for the extend function are satisfied. Let Call = ((cl1, sh1), f1),
Prime = ((cl2, sh2), f2), and extendsf (Call, g, Prime) = ((cl′, sh′), f ′). Let also
s1 = ↓∪ cl1 ∪ sh1, s2 = ↓∪ cl2 ∪ sh2, and extendf ((s1, f1), g, (s2, f2)) = (sh, f).
Then ( ↓∪cl′ ∪ sh′) ⊇ sh and f ′ ⊆ f .

4 Detecting Cliques

Obviously, to minimize the representation in SHw it pays off to replace any set
S of sharing groups which is the proper powerset of some set of variables C by
including C as a clique. Once this is done, the set S can be eliminated from the
sharing set, since the presence of C in the clique set makes S redundant. This is
the normalization mentioned in Section 3.1 when defining extend for the Clique-
Sharing domain, and denoted there by a normalize function. In this section we
present an algorithm for such a normalization.

Given an element (cl, sh) ∈ SHw, sharing groups might occur in sh which
are already implicit in cl. Such groups are redundant with respect to the sharing
represented by the pair. We say that an element (cl, sh) ∈ SHw is minimal if
↓∪cl∩ sh = ∅. An algorithm for minimization is straightforward: it should delete

from sh all sharing groups which are a subset of an existing clique in cl. But
normalization goes a step further by “moving sharing” from the sharing set of
a pair to the clique set, thus forcing redundancy of some sharing groups (which
can therefore be eliminated).

While normalizing, it turns out that powersets may exist which can be ob-
tained from sharing groups in the sharing set plus sharing groups implied by
existing cliques in the clique set. The representation can be minimized further if

1. Let n = |sh|; if n < 3, stop.
2. Compute the maximum m such that n ≥ 2m−1.
3. Let i = m.
4. If i = 1, stop.
5. Let C = {s | s ∈ sh, |s| = i}.
6. If C = ∅ then decrement i and go to 4.
7. Take S ∈ C and delete it from C.
8. Let SS = {s | s ∈ sh, s ⊆ S}.
9. Compute [S].

10. If |SS| = 2i − 1 − [S] then:
(a) Add S to cl (regularize cl).
(b) Subtract SS from sh.

11. Go to 6.

Fig. 1. Algorithm for detecting cliques
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such sharing groups are also “transferred” to the clique set by adding the ade-
quate clique. We say that an element (cl, sh) ∈ SHw is normalized if whenever
there is an s ⊆ ( ↓∪cl ∪ sh) such that s =↓c for some set c then s ∩ sh = ∅.

Our normalization algorithm is presented in Figure 1. It starts with an ele-
ment (cl, sh) ∈ SHw, which is already minimal, and obtains an equivalent ele-
ment (w.r.t. the sharing represented) which is normalized and minimal. First, the
number m is computed, which is the length of the longest possible clique. Then
the sharing set sh is traversed to obtain candidate cliques of the greatest possible
length i (which starts in m and is iteratively decremented). Existing subsets of a
candidate clique S of length i are extracted from sh. If there are 2i − 1− [S] sub-
sets of S in sh then S is a clique: it is added to cl and its subsets deleted from sh.
Note that the test is performed on the number of existing subsets, and requires
the computation of a number [S], which is crucial for the correctness of the test.

The number [S] stands for the number of subsets of S which may not appear
in sh because they are already represented in cl (i.e., they are already subsets of
an existing clique). In order to correctly compute this number it is essential that
the input to the algorithm be already minimal; otherwise, redundant sharing
groups might bias the calculation: the formula below may count as not present
in sh a (redundant) group which is in fact present. The computation of [S] is as
follows. Let I = {S ∩C | C ∈ cl} \ {∅} and Ai = {∩A | A ⊆ I, |A| = i}. Then:

[S] =
∑

1≤i≤|I|
(−1)i−1

∑
A∈Ai

(2|A| − 1)

Note that the representation can be minimized further by eliminating cliques
which are redundant with other cliques. This is the regularization mentioned in
step 10 of the algorithm. We say that a clique set cl is regular if there are no
two cliques c1 ∈ cl, c2 ∈ cl, such that c1 ⊂ c2. This can be tested while adding
cliques in step 10 above.

Finally, there is a chance for further minimization by considering as cliques
candidate sets of variables such that not all of their subsets exist in the given
element of SHw. Note that the algorithm preserves precision, since the sharing
represented by the element of SHw input to the algorithm is the same as that
represented by the element which is output. However, we could set up a threshold
for the number of subsets of the candidate clique that need be detected, and in
this case the output element may in general represent more sharing. This might
in fact be useful in practice in order to use the normalization algorithm as a
widening operation. Note that, although the complexity of this algorithm is
exponential since it is actually the problem of solving all the maximal cliques
of an undirected graph (NP-complete), it is not a practical problem due to the
small size of these graphs.

5 Widening Set-Sharing

A widen function for SHw is based on a widening operator & : SHw → SHw,
which must guarantee that for each clsh ∈ SHw, &clsh ⊇ clsh. The following
theorem is necessary to establish the correctness of the widenings used:
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Theorem 3. Let clsh ∈ SHw and equation x = t, x ∈ V , t ∈ Term, we have

amgus(&clsh, x = t) ⊇ amgus(clsh, x = t)

For our experiments we start defining two widenings. The first of them,
by [Fec96], is of an intermediate precision and it is as follows:

&F (cl, sh) = (cl ∪ sh, ∅)

The second widening was defined in [ZBH99] as a cautious widening (because
it did not introduce new sharing sets, although obviously information was lost
as soon as the operations for the Clique-Sharing domain were used) and the idea
was to define an undirected graph from an element clsh ∈ SHw and compute
the maximal cliques of that graph:

&G(cl, sh) = ({C1, . . . , Ck}, sh)

where C1, . . . , Ck are all the maximal cliques of the induced graph from (cl, sh).
For the experimental evaluation in [ZBH99] a version of this cautious widening
&g was used which is equivalent to the previous one but disregarding the sin-
gletons. It is easy to see that our normalization process is totally equivalent to
the computation of the maximal cliques of a graph and thus we will use the nor-
malization process as a cautious widening &N . In the same way as [ZBH99], we
use a more precise version of &N which is based on disregarding the singletons
called &n.

Since cliques should only be used when it is strictly necessary to keep the
analysis from running out of memory, its application is guarded by a condition.
We use the simplest possible condition based on cardinality of the sets in SHw,
imposing a threshold n on cardinality which triggers the widening. We have
tuned the threshold in order to be able to achieve a reasonable trade-off between
the objective of triggering widening only when strictly required and preventing
running out of memory in all cases. For each widening, the triggering condition
is defined as follows:

widen(cl, sh) =
{
&(cl, sh) if (

∑
s∈sh |s|) > n

(cl, sh) otherwise

6 Experimental Results

We have measured experimentally the relative efficiency and precision obtained
with the inclusion of cliques both as an alternative representation in the Sharing
and Shfr domains and as a widening in the Shfr domain. Our first objective is to
study the implications of the change in representation for analysis: although the
introduction of cliques does not by itself imply a loss of precision, the abstract
operations for cliques are not precise. We first want to measure such loss in
practice. Second, to minimize precision loss, the clique representation should
ideally be used only whenever necessary, i.e., when the classical representation
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cannot deal with the analysis of the program at hand. In this case, we will be
using the clique representation as a widening to guarantee (smooth) termination
of the analysis, i.e., that analysis does not abort because of running out of
memory. It turns out that this is not a trivial task: it is not easy to determine
beforehand when analysis will need more memory than is available.

Benchmarks are divided into three groups. Because of space limitations, for
each group we only show a reduced number of the benchmarks actually used:
those which are more representative. The first group, append (app in the ta-
bles) through serialize (serial), is a set of simple programs, used as a testbed for
an analysis: they have only direct recursion and make a straightforward use of
unification (basically, for input/output of arguments i.e., they are moded). The
second group, aiakl through zebra, are more involved: they make use of mutual
recursion and of elaborate aliasing between arguments to some extent; some of
them are parts of “real” programs (aiakl is part of an analyzer of the AKL
language; prolog read (plread) and rdtok are Prolog parsers). The benchmarks
in the third group are all (parts of) “real” programs: ann is the &-prolog par-
allelizer, peephole (peep) is the peephole optimizer of the SB-Prolog compiler,
qplan is the core of the Chat-80 application, and witt is a conceptual clustering
application.

Our results are shown in Tables 1 and 2. Columns labeled T show analysis
times in milliseconds, on a medium-loaded Pentium IV Xeon 2.0Ghz with two
processors, 4Gb of RAM memory, running Fedora Core 2.0, and averaging several
runs after eliminating the best and worst values. Ciao version 1.11#326 and
CiaoPP 1.0#2292 were used. Columns labeled P (precision) show the number of
sharing groups in the information inferred and, between parenthesis, the number
of sharing groups for the worst-case sharing. Columns labeled #W show the
number of widenings performed and columns labeled #C show the number of
clique groups. Since our top-down framework infers information at all program
points (before and after calling each clause body atom), and also several variants
for each program point, it is not trivial to provide a good absolute measure of
precision: changes in precision may cause more variants during analysis, which
in turn affect the precision measure. Instead, we have chosen to provide the
accumulated number of sharing groups in all variants for all program points, in
order to be able to compare results in different situations.

6.1 Cliques as Alternative Representation

Table 1 shows the results for Sharing, Clique-Sharing, Shfr, and Clique-Shfr, for
the cases in which cliques are used as an alternative representation.

In order to understand the results it is important to note an existing syn-
ergy between normalization, efficiency, and precision when cliques are used as
an alternative representation. If normalization causes no change in the sharing
representation (i.e., sharing groups are not moved to cliques), usually because
powersets do not really occur during analysis, then the clique part is empty.
Analysis is the same as without cliques, but with the extra overhead due to the
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use of the normalization process. Then precision is the same but the time spent
in analyzing the program is a little longer. This also occurs often if the use of
normalization is kept to a minimum: only for correctness (in our implementa-
tion, normalization is required for correctness at least for the extend function
and other functions used for comparing abstract substitutions). This should not
be surprising, since the fact that powersets occur during analysis at a given time
does not necessarily mean that they keep on occurring afterward: they can disap-
pear because of groundness or other precision improvements during subsequent
analysis (of, e.g., builtins).

Table 1. Precision and Time-efficiency

Sh SHW Shfr SHW fr
T P T P #C T P T P #C

app 11 29 (60) 8 44 (60) 4 6 7 (30) 6 7 (30) 0
deriv 35 27 (546) 27 27 (546) 0 27 21 (546) 27 21 (546) 0
mmat 13 14 (694) 11 14 (694) 0 9 12 (694) 11 12 (694) 0
qsort 24 30 (1716) 25 30 (1716) 0 25 30 (1716) 27 30 (1716) 0
query 11 35 (501) 13 35 (501) 5 12 22 (501) 14 22 (501) 0
serial 306 1734 (10531) 90 2443 (10531) 88 61 545 (5264) 55 736 (5264) 41
aiakl 35 145 (13238) 42 145 (13238) 0 37 145 (13238) 43 145 (13238) 0
boyer 369 1688 (4631) 267 1997 (4631) 158 373 1739 (5036) 278 2074 (5036) 163
brow 30 69 (776) 29 69 (776) 0 29 69 (776) 31 69 (776) 0
plread 400 1080 (408755) 465 1080 (408755) 10 425 1050 (408634) 481 1050 (408634) 0
rdtok 325 1350 (11513) 344 1391 (11513) 182 335 1047 (11513) 357 1053 (11513) 2
wplan 3261 8207 (42089) 1430 8191 (26857) 420 1320 3068 (23501) 1264 5705 (25345) 209
zebra 25 280 (67·107) 34 280 (67·107) 0 41 280 (67·107) 42 280 (67·107) 0
ann 2382 10000 (31·104) 802 19544 (31·104) 700 1791 7811 (40·104) 968 14108 (39·104) 510
peep 831 2210 (12148) 435 2920 (12118) 171 508 1475 (9941) 403 2825 (12410) 135
qplan - - 860 42·104 (38·105) 747 - - 2181 23·104 (31·105) 529
witt 405 858 (45·105) 437 858 (45·105) 25 484 813 (45·105) 451 813 (45·105) 0

When the normalization process is used more often (like for example at every
call to call2entry as we have done), then sharing groups are moved more often
to cliques. Thus, the use of the operations that compute on clique sets produces
efficiency gains, and also precision losses, as it was expected. However, precision
losses are not high. Finally, if normalization is used too often, then the analysis
process suffers from heavy overhead, causing too high penalty in efficiency that it
makes the analysis intractable. Therefore it is very clear that a thorough tuning
of the use of the normalization process is crucial to lead analysis to good results
in terms of both precision and efficiency.

As usual in top-down analysis, the extend function plays a crucial role. In our
case, this function is a very important bottleneck for the use of normalization.
As we have said, we use the normalization for correctness at the beginning of
the extend function. Additionally, it would be convenient to use it also at the
end of such function, since the number of sharing groups can grow too much.
However, this is not possible in practice due to the clsh function, which can
generate so many sharing groups that, at the limit, the normalization process
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itself cannot run. Alternative definitions of clsh have been studied, but because
of the precision losses incurred, they have been found impractical.

Table 1 shows that there are always programs whose analysis of which does
not produce cliques. This occurs in some of the benchmarks (like all of the first
group but serialize and some of the second one such as aiakl, browse (brow),
prolog read, and zebra). In this case, precision is maintained as expected but
there is a small loss of efficiency due to the extra overhead discussed above. The
same thing happens with benchmarks which produce cliques (append, query,
prolog read, and witt, in the case of Sharing without freeness), but this does not
affect precision.

On the other hand, for those benchmarks which do generate cliques (like
serialize, boyer, warplan (wplan), ann, and peephole) the gain in efficiency is
considerable at the cost of a small precision loss. As usual, efficiency and precision
correlate inversely: if precision increases then efficiency decreases and vice versa.
A special case is, to some extent, that of rdtok, since precision losses are not
coupled with efficiency gains. The reason is that for this benchmark there are
extra success substitutions (which do not convey extra precision and, in fact, the
result is less precise) that make the analysis times larger.

In general, the same effects are maintained with the addition of freeness,
although the efficiency gains are lower whereas the precision gains are a little
higher. The reason is that the amgusf function is less efficient than amgus (but
more precise). Overall, however, the trade-off between precision and efficiency
is beneficial. Moreover, the more compact representation of the clique domain
makes possible to analyze benchmarks (e.g., qplan) which ran out of memory
with the standard representation.

6.2 Widening Set-Sharing Via Cliques

As mentioned before, the intention of the widening operator is to limit the use of
cliques only to the cases where it is necessary in order to avoid analysis running
out of memory. This is not a trivial task, as explained below. Table 2 shows
results from our experiments for Shfr, Clique-Shfr using widening. The widenings
have been applied before each abstract unification and at the end of the extend
function, and they are guarded by the condition discussed in Section 5.

The choice of a suitable value of the threshold is a key issue, since this thresh-
old is responsible for triggering widening only for the cases where it is needed.
In a top-down framework the choice of threshold is further complicated by the
extend function. As commented above, this function and, in particular, the clsh
function defined in Section 3.1 can make the number of sharing groups grow
excessively after every call, since that function generates powersets of the given
cliques. In order to solve this problem we studied two different alternatives.

First, we tried a more efficient version of the clsh function, which moved some
extra sharing groups to cliques. This, however, resulted in excessive precision
losses which reduced the usefulness of the analysis. Given this, we also developed
a hybrid approach for the case of &n, where &n is used in unifications but the
more aggressive &F is used after calling clsh. We call this version &nF .
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As for practical thresholds, we have concluded experimentally that an appro-
priate value for the guard for the widenings in our test platform is 250. This is
the highest value that prevents analysis from running out of memory. However,
as we will see, it also triggers widening for a few cases where it is not needed. For
the additional threshold used in the &nF operations (Section 4) we have deter-
mined that 40% is an appropriate value since, although low, it gives surprisingly
good results. The results in Table 2 thus correspond to &F

250 and &nF
250−40.

Table 2. Precision and Time-efficiency with Widening

Shfr SHW fr+�F
250 SHW fr+�nF

250−40

T P T P #W T P #W

app 6 7 (30) 11 7 (30) 0 10 7 (30) 0
deriv 27 21 (546) 48 21 (546) 0 35 21 (546) 0
mmat 9 12 (694) 16 12 (694) 0 16 12 (694) 0
qsort 25 30 (1716) 40 30 (1716) 0 43 30 (1716) 0
query 12 22 (501) 23 22 (501) 0 25 22 (501) 0
serial 61 545 (5264) 74 722 (5264) 6 70 703 (5264) 10
aiakl 37 145 (13238) 63 145 (13238) 6 61 145 (13238) 33
boyer 373 1739 (5036) 561 1744 (5036) 2 536 1743 (5036) 4
brow 29 69 (776) 44 69 (776) 0 42 69 (776) 0
plread 425 1050 (408634) 3419 24856 (1754310) 198 593 1050 (408634) 103
rdtok 335 1047 (11513) 472 1047 (11513) 0 466 1047 (11513) 0
wplan 1320 3068 (23501) 1878 5376 (21586) 42 1394 5121 (20894) 60
zebra 41 280 (67·107) 42 280 (67·107) 1 56 280 (67·107) 48
ann 1791 7811 (401220) 751 16122 (394800) 17 726 16122 (394800) 34
peep 508 1475 (9941) 453 2827 (12410) 8 512 2815 (12410) 16
qplan - - 1722 238426 (3141556) 26 1897 233070 (3126973) 55
witt 484 813 (4545594) 2333 259366 (23378597) 110 736 813 (4545594) 140

As expected, the use of widening allows executing programs which the Shfr
domain could not due to exceeded memory capacity. However, as mentioned in
the discussion of the threshold, we do also widen for some benchmarks which
the original domain could handle. Fortunately, the precision losses are limited.

Widening operator &nF
250−40 results at least as precise as &F

250 and, for most
of the cases, better. In fact, the results obtained for prolog read and witt using
&F

250 are remarkable since the information obtained is very poor.
The difference in time efficiency between &F

250 and &nF
250−40 is acceptable,

and in fact for some programs &nF
250−40 is more efficient than &F

250. Note that
for prolog read and witt the difference is considerable in favor of &nF

250−40. There
appears to be a clear correspondence between number of widenings and efficiency
gains. This holds even if the widening operations are expensive, such as with
&nF

250−40, because the widening expense is offset by efficiency gains in the abstract
operations due to the reduction in the size of the abstract substitutions being
processed.



Efficient Top-Down Set-Sharing Analysis Using Cliques 197

7 Conclusions

We have studied the problem of efficient, scalable set-sharing analysis of logic
programs using cliques both as alternative representation and as widenings. We
have concentrated on the previously unexplored case of inferring set-sharing
information in the context of top-down analyses. To this end, we have proposed
all the operations required for top-down analyses for the cases of combining
cliques with both Sharing and Sharing+Freeness. We have also proposed and
studied several widenings, providing different levels of precision and efficiency
tradeoff.

Our experimental evaluation supports the conclusion that, for inferring set-
sharing, the use of cliques as an alternative representation results in limited preci-
sion losses (due to normalizations) while useful efficiency gains are obtained. We
have also derives useful conclusions regarding the interactions between thresh-
olds, precision, efficiency and cost of widening which have resulted in the proposal
of a hybrid widening which resulted quite useful in practice. In fact, the new rep-
resentations allowed analyzing some programs that exceeded memory capacity
using classical sharing representations. Thus, we believe our results contribute
to the practical application of top-down analysis of set sharing.
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Abstract. This paper presents a powerful language for querying com-
plex graphs and a method for generating efficient implementations that
can answer queries with complexity guarantees. The graphs may have
edge labels that may have parameters, and easily and naturally capture
complex interrelated objects in object-oriented systems and XML data.
The language is built on extended regular path expressions with variables
and scoping, and can express queries more easily and clearly than pre-
vious query languages. The method for implementation first transforms
queries into Datalog with limited extensions. It then extends a previous
method to generate specialized algorithms and complexity formulas from
Datalog with these extensions.

1 Introduction

Database applications must query complex interrelated objects, and thus lan-
guages that provide both the power and ease of querying complex graphs are
highly desired. Such query languages are essential not only for traditional
database applications and mining of semi-structured data, but also for analyzing
large computer programs and systems.

Various forms of regular path queries are ways of declaratively expressing
queries on graphs as regular-expression-like patterns that are matched against
paths in the graph. Some have been used widely in querying semi-structured
data (e.g., [1, 3, 7, 20]), including in particular tree structured data in XML,
which is increasingly used for representing data, including knowledge as data and
programs as data. Some more powerful kinds have provided general frameworks
for analyzing computer programs and systems (e.g., [21, 11, 17]).

Regular-expression-like patterns are composed of simple and easy operations
for sequencing, choice, repetition, skipping, negation, etc. Even though they are
not as powerful as languages in more sophisticated frameworks, they are more
perspicuous and convenient, and are sufficiently powerful to express common and
important properties. The combined power and simplicity contribute to their
wide use in computing, in database and web information retrieval, languages
and compilers, operating systems and security, etc.
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While regular-expression-like patterns have been studied and used extensively
in analysis of linear data and in recent years tree-structured data, many applica-
tions deal with much more complex interrelated objects. In regular path query
frameworks, such information is captured as graphs, and the analyses are based
on properties that hold on paths in the graph. In particular, parametric regular
path queries [17] allow the use of variables, also called parameters, in queries so
that additional information along paths can be captured and related.

Despite this progress, no previous regular path query framework supports
easy, powerful, and efficient queries over a rich data model that naturally mod-
els all aspects of objects in object-oriented systems and XML data. Frameworks
with rich data models exist for querying object-oriented databases [14] and for
querying XML data [20], but the former does not support regular-expression
like patterns, and the latter does not support queries on graphs. Languages that
support regular-expression like patterns on graphs [10, 13] are studied heavily
in terms of expressiveness and query containment, but not on improved ease of
expressing queries or efficient implementation with precise complexity guaran-
tees. The best of existing approaches must be combined and extended to support
easy, powerful, and efficient queries of complex graphs.

This paper presents a powerful language for querying complex graphs and a
method for generating efficient implementations that can answer queries with
complexity guarantees. The graphs may have edge labels that may have para-
meters and easily and naturally capture complex interrelated objects in object-
oriented systems and XML data. The language is built on parameterized reg-
ular path expressions with copings, and can express queries more easily and
clearly than previous query languages. The method for implementation first
transforms queries into Datalog with limited extensions. It then extends a pre-
vious method [18] to generate specialized algorithms and complexity formulas
from Datalog with these extensions.

2 The Data Model

Complex graphs. We consider edge-labeled directed graphs where the labels
may have parameters. We call such graphs complex graphs. A complex graph
comprises a set of vertices and a set of edges. Each vertex has a unique id. Each
edge has a source vertex, a target vertex, and a label.

A label captures information relating a source vertex and a target vertex.
For example, in applications that manipulate computer programs, an edge may
relate a program-point vertex to another program-point vertex with a label def
that captures the assignment operation in between. In a supply chain applica-
tion, an edge may relate a manufacturer vertex and a product vertex with a
label supply. A label may have arguments that capture additional information
about the relationship. For example, an assignment operation num := 5 may be
represented using an edge label def(num) or def(num, 5). To represent the date
and means of a supply relationship, a label such as supply(12/20/04, air) may
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be used. A special label can be used to indicate that no information about the
relationship is of interest.

We refer to names, such as def and supply, that represent kinds of relation-
ships, as constructors. We refer to names, such as num, 12/20/04, and vertex
ids, that represent individuals, as constants. A label is a constructor applied to
zero or more arguments, where each argument is a constant. We assume that the
domains of constructors and constants are finite; this assumption always holds
in any particular application.

Modeling objects and relationships. Complex graphs can model objects
and classes naturally and precisely. Objects are modeled as vertices, where ver-
tex ids are object ids. Values of attributes are also modeled as vertices, consis-
tent with them being objects in a pure object-oriented model. Classes are also
modeled as vertices, consistent with classes being objects in a powerful object-
oriented model.

Attributes and relationships are modeled as edges. An edge labeled with an
attribute name connects an object to the value of that attribute of the object. An
instance-of relationship connects an object to another object that is an instance
of the first object. A subclass relationship connects an object to another object
that represents a subclass of the first object.

Modeling XML data. Complex graphs can model XML data easily and
significantly better than using only trees. XML elements and attribute values
are modeled as vertices. XML nested element relationship and attribute are
modeled as edges relating an element to a child element of it and to the value
of an attribute of it, respectively; these are the straightforward tree edges in
XML documents. Relationships that can not be captured using tree edges are
expressed directly as graph edges in our model but need to be encoded using
IDREF and IDREFS in XML.

Paths. A path in a complex graph is expressed as a sequence of vertices and
edges of the form:

[v0] l1 [v1] l2 . . . [vn−1] ln [vn] (1)
where each vi is a vertex, and each li is the label of an edge from vi−1 to vi. In

another word, the above expression asserts that there is an edge labeled li from
vertex vi−1 to vi. For example, the program point start followed by an opera-
tion prompt followed by the program point prelogin followed by an operation
read(account, password) followed by the program point preauthentication
may be represented as:

[start] prompt [prelogin]read(account, password) [preauthentication]

3 Path-Based Queries

For ease of presentation, in this section, we use x, y, and z possibly with sub-
scripts for variables, and use other names besides keywords for constructors and
constants.
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Simple queries. One may query for vertices, labels, constructors, and argu-
ments that satisfy certain properties based on paths. Simple queries are of the
form:

x1, ..., xk : e (2)

where x1, ..., xk are variables, called query variables, and e is an expression, called
a path-properties expression, and is constructed from paths that contain x1, ..., xk
and may contain other variables, wildcard , and negation ¬; from combinations
of paths using conjunction ∧, disjunction ∨, and negation ¬; and from constraints
added to these that involve primitive arithmetic, comparison, and Boolean op-
erations on variables in the paths. The query returns the set of tuples of values
of x1, ..., xk such that there exist values of the other variables, if any, for which
the properties about paths asserted by the expression e hold.

Variables and wildcard may refer to, and negation may be applied to, vertices,
labels, constructors, and arguments. Variables that refer to labels may not refer
to vertices, constructors, or arguments. Multiple occurrences of a variable must
be bound to the same value. A wildcard matches any value. A negation applied
to an item matches any value other than what the item matches. For example,
the following query returns the set containing each object that is a branch of
acme and has a director whose salary is at least 150000:

x : [acme] branch [x] director [ ] salary [y] ∧ y >= 150000

We could easily query also the salary, by returning x, y. Each variable used
in a constraint must also appear outside of the constraint, like y appears in
salary [y]. Note that path-properties expression [v0] l1 [v1] l2 [v2] is equivalent
to expression [v0] l1 [v1] ∧ [v1] l2 [v2].

Extended regular expression based queries. One may also express the
property that a path is formed by repeating a path segment 0 or more times.
This is done by applying the repetition operator ∗ to the repeated segment. For
example, the following query returns the set of program points y that immedi-
ately follow a use of an uninitialized variable, i.e., there is a path from program
point start on which a variable is not defined and is used right before y:

y : [start] (¬def(x)[ ])∗ use(x) [y] (3)

One may return also the uninitialized variable by including x as another query
variable.

Often, intermediate vertices in paths are not of interest, as in the example
above. Thus we allow [ ] to be omitted from a path; note that this also allows
us to easily refer to the program point right before use(x) without unrolling the
last iteration of the repetition. We also allow a shorthand |, instead of using ∨,
to separate alternative paths. Queries that may use these notations are called
extended regular expression based queries. For example, the following query re-
turns the set of program point pairs z, y right before and after, respectively, the
first use of an uninitialized variable:

z, y : [start] (¬(def(x)|use(x)))∗ [z] use(x) [y] (4)
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Extended regular expression based queries provide the full power and ease of
using extended regular expressions in queries over parameterized edge labels, as
in parametric regular path queries [17]. Parametric regular path queries do not
support the use of vertex ids as the queries in this paper do. This support allows
us to easily query vertices on cycles, i.e., a vertex is returned if some nonempty
path from it goes back to it:

x : [x] + [x]

where s+ is a short hand for s s∗ .

Variable scoping and nested queries. Variables can be declared with a
scope local to a subexpression. That is, a path-properties expression may be of
the form:

local x1, ..., xk e (5)

where the keyword local indicates that the scope of variables x1, ..., xk is e.
For example, in a model of a computer network, where link relates directly
connected nodes, the following query returns all pairs of a client and a server
such that the two are connected by a path containing nodes that do not block
port 22:

x, y : [x] type [client] ∧ [y] type [server] ∧
[x] (local z link [z] ∧ ¬([z] block [22]))∗ link [y]

Note that when scoping is not inside a repetition, it is unnecessary and can be
removed, by replacing each local variable with a fresh variable. Variables declared
inside a repetition can not be replaced this way because such a variable is local
to the repeated expression and may be bound to different values for different
rounds in the repetition, but a non-local variable must be bound to the same
value for all rounds of the repetition.

A query may also be nested inside [ ] to express the properties of the vertex
in it, in the form of [x : e], and it is equivalent to conjuncting the expression e
to the immediately enclosing expression. For example, the segment repeated in
the example above can also be written as

local z link [z : ¬([z] block [22])]

This adds convenience and modularity using only the concepts and syntax al-
ready introduced.

Querying objects and XML data. Objects can be organized into classes,
and methods can be defined in classes as usual for querying objects [14], except
that extended regular expression based queries can now be used in the method
body. The use of extended regular expressions is essential for querying graph
structures of unbounded size, and it greatly increases the expressive power of
the query language.

When a method m returns exactly one query variable, an invocation of m can
have the same syntax and semantics as a short-cut edge, [v1]m(a1, ..., ak)[v2],
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where the starting vertex v1 is an object on which m is invoked, a1, ..., ak are
other arguments to m, and the ending vertex v2 is an object returned by m. For
simplicity, we may use the same name space for edge label constructors and
method names, and may allow the same names to be used for both and give
preference to one of them.

Objects can be created out of the end result of a query as usual, by viewing
each returned tuple as an object, giving it a logical object id, and giving an
attribute name to each component of the tuple [14]. Since these objects are
created after query evaluation, all operations including repetitions in a query
operate on finite data, and therefore we can guarantee that all queries terminate.

Querying XML data is easy using graph queries. Unbounded levels of ele-
ment nesting poses a challenge to previous object query languages [14] but is
easily expressed in our language using the repetition operator. Querying com-
plicated graphs using our language is significantly easier than using XML query
languages, such as XQuery, that employ explicit joins for relationships that are
not nested elements or attributes.

Expressiveness. We think this query language has the same expressiveness as
GraphLog [10], which is equivalent to stratified linear Datalog, first order logic
with transitive closure, and non-deterministic logarithmic space. This is because
our language supports all the kinds of graph edges and query operations that
GraphLog does, and variable scoping and query nesting in our language can be
translated into GraphLog.

Support for scoping, and textual flexibilities such as query nesting, make our
language easier to use, either by itself or as part of another query language
such as [15]. For example, the client-server example above, if expressed using
GraphLog, needs two graphs, one for each of the following rules:

result(x,y) :- type(x,client), type(y,server),
link_node_not_block_22*.link(x,y).

link_node_not_block_22(x,z) :- link(x,z), not block(z,22).

where each argument variable or constant corresponds to a vertex, and each
label(vert1, vert2) corresponds to an edge from vert1 to vert2 and labeled
label; the edge on the left of :- is called the distinguished edge of the graph,
and is drawn as a thick line. So the first graph has 4 vertices and 4 edges, and the
second has 3 vertices and 3 edges. Furthermore, if there are additional constraints
involving z, x, and y, one can simply conjunct them with the segment repeated
in our language, but one must add not only these constraints to the second
rules, but also additional parameters to the label link node not block 22 in
both graphs to pass them between the graphs.

4 Transformation into Datalog with Limited Extensions

Datalog with limited extensions. A Datalog program is a finite set of
relational rules of the form:
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p1(x11, ..., x1a1) ∧ ... ∧ ph(xh1, ..., xhah) → q(x1, ..., xa) (6)

where h is a natural number, each pi (respectively q) is a relation of ai (re-
spectively a) arguments, each xij and xk is either a constant or a variable, and
variables in xk’s must be a subset of the variables in xij’s. If h = 0, then there are
no pi’s or xij’s, and xk’s must be constants, in which case q(x1, ..., xa) is called
a fact. For the rest of the paper, “rule” refers only to the case where h ≥ 1, in
which case each pi(xi1, ..., xiai) is called a hypothesis of the rule, and q(x1, ..., xa)
is called the conclusion of the rule.

The meaning of a set of rules and a set of facts is the smallest set of facts
that contains all the given facts and all the facts that can be inferred, directly or
indirectly, using the rules. Note that variables occurring in exactly one hypothesis
and not in the conclusion of a rule are equivalent to wildcards; their names do
not affect the meaning of the rule and can be replaced with .

Datalog is a database query language based on the logic programming
paradigm [8, 2]. Recursion in Datalog allows queries that are not expressible
in relational algebra or relational calculus but are essential for querying graph
structures of unbounded size.

We consider Datalog with limited extensions—stratified negation, unsafe
rules, and additional constraints—for capturing complex graph queries, includ-
ing extended regular expression based queries. Stratified negation allows negated
hypotheses, but they may not appear in cycles in recursive rules; it has much
simpler meanings and more efficient implementations than arbitrary negation,
by allowing all facts in a relation to be inferred before its negation is needed.
Unsafe rules contain variables in the conclusion that are unbound, i.e., that do
not appear in any hypothesis; such variables may be left in the arguments of
inferred facts and be universally quantified. Additional constraints involve prim-
itive arithmetic, comparison, and Boolean operations on variables that appear
in the hypotheses or the conclusion of a rule; they are additional conditions on
the values of those variables.

Transforming basic queries and extended regular expression based
queries. Complex graph queries can be transformed into Datalog with stratified
negation, unsafe rules, and additional constraints. Queries where variables, wild-
card, and negation do not appear in constructors of edge labels are transformed
as described below. Other queries can be transformed in the same way after each
exceptional constructor is first transformed into a distinct new constructor that
has an additional argument whose value ranges over possible constructors.

Each constructor c of an edge label corresponds to an edge relation c that
relates source and target vertices and the arguments of the label. An edge from
v1 to v2 with label c(a1, ..., ak) corresponds to a fact c(v1, v2, a1, ..., ak).

Operations in path-properties expressions correspond to rules that combine
relations that capture sub-expressions into relations that capture larger expres-
sions. Edge relations capture the smallest expressions. New relations are intro-
duced to capture larger expressions; the arguments of a new relation are deter-
mined as described below. Finally, a special relation is introduced to capture the
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entire query; it projects the relation that captures the outermost path-properties
expression onto the query variables.

Arguments of a new relation include all variables in the expression it captures
that also appear in the rest of the query or, if the expression is a repetition or
is inside a repetition, all variables except those that are local to the repeated
expression and appear only in the expression captured; this takes care of vari-
able scoping, and the requirement of appearance in the rest of the query avoids
propagation of unneeded values. In particular, for an expression that represents
a path segment, the starting vertex and ending vertex of the path segment are
included as the first two arguments of the corresponding relation. For an expres-
sion that represents a path segment and whose starting or ending vertex is a
wildcard or is not indicated explicitly, we introduce a fresh variable for such a
vertex. The fresh variable is effectively a wildcard, so the semantics is preserved.
When combining relations that capture smaller expressions into relations that
capture larger expressions, shared variables are used to capture equality between
the ending vertex of one path segment and the starting vertex of the next path
segment.

Wildcards for, and negations applied to, vertices, arguments, and labels are
transformed as follows. Wildcards for vertices and arguments are handled as de-
scribed above by introducing fresh variables. All wildcards for labels are trans-
formed into a special edge relation, anylabel(v1, v2) for source vertex v1 and
target vertex v2, and a set of rules of the following form, one for each edge
relation c:

c(v1, v2, a1, ..., ak) → anylabel(v1, v2) (7)

Negation applied to a vertex or an argument is transformed into an inequality
constraint attached to the relation that captures the enclosing path-properties
expression and where the vertex or argument with negation is replaced by a
fresh variable; the inequality constraint expresses that the fresh variable is not
equal to the constant or variable to which the negation is applied, except that
the constraint is omitted if the negation is applied to a variable not used in the
rest of the query. Negation applied to a label is transformed into anylabel plus
a negated hypothesis, where the hypothesis corresponds to the edge relation for
the label without negation.

Combinations of paths using conjunction, disjunction, and negation are trans-
formed as follows. Suppose p1(x11, ..., x1k1) captures exp1, and p2(x21, ..., x2k2)
captures exp2. If p(x1, ..., xk) captures exp1 ∧ exp2, then we introduce a rule:

p1(x11, ..., x1k1) ∧ p2(x21, ..., x2k2) → p(x1, ..., xk) (8)

Note that if exp1 and exp2 are consecutive path segments, then x12 and x21 are
the same variable. If p(x1, ..., xk) captures exp1 ∨ exp2, then we introduce two
rules:

p1(x11, ..., x1k1) → p(x1, ..., xk)
p2(x21, ..., x2k2) → p(x1, ..., xk)

(9)

These rules may be unsafe, because any variable in p(x1, ..., xk) that is not in a
disjunct is unbound in the conclusion of the corresponding rule. More generally,
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a conjunction with k conjuncts is transformed into a rule with k hypotheses,
and a disjunction with k disjuncts is transformed into k rules. Negation applied
to a path-properties expression is simply transformed into a rule with a negated
hypothesis; we show in the next section that these negations are stratified.

A repetition of an expression is transformed into a fact with variable argu-
ments, for repeating zero times, and a rule involving recursion, for repeating
non-zero times. If p1(x1, x2, x3, ..., xk) captures exp, and p(x1, x2, x3, ..., xk) cap-
tures exp∗ , then the fact is p(x, x, x3, ..., xk), and the rule is

p(x1, x12, x3, ..., xk) ∧ p1(x12, x2, x3, ..., xk) → p(x1, x2, x3, ..., xk) (10)

The rule may also be written by exchanging p and p1 in the hypotheses. They are
both correct rules, but depending on the query, may lead to different asymptotic
running times, as discussed below.

Constraints themselves do not require transformation. If all variables in a
constraint are from the same scope after unnecessary scopings are removed, i.e.,
the constraint is not inside a repetition and involves both local variables and non-
local variables of the repeated expression, then it is simply added as a hypothesis
of the rule that combines all the subexpressions it constrains. Otherwise, the facts
and rules for the repetition are rewritten when combining the repetition with
the expression on the left or right that is constrained. For example, suppose (10)
has, as an additional condition, a constraint c(..., y) that is transformed from the
same constraint in exp, where y is a variable not local to exp; q(x1, x2, y) captures
the expression to the left of the repetition; and r(x1, x2, x3, ..., xk, y) captures
the combined expression. Then, the fact p(x, x, x3, ..., xk) and the rule (10) are
rewritten into

q(x1, x2, y) → r(x1, x2, x3, ..., xk, y)
r(x1, x12, x3, ..., xk, y) ∧ p1(x12, x2, x3, ..., xk) → r(x1, x2, x3, ..., xk, y)

Combining a repetition with the expression on the right that is constrained is
similar. However, if a constraint involves non-local variables on both sides of the
repetition, only one side can be combined using the rewrite above, and the non-
local variables on the other side are not bound and must be enumerated during
the execution of the resulting program. Therefore, one may choose to combine
with the side that will minimize the enumeration.

The transformation into a set of facts and rules has a worst-case time com-
plexity of O(qvs), where q is the size of the query, v is the number of variables,
and s is the maximum number of scopes that the variables in a constraint are
in. This is because, if all variables in each constraint are from the same scope,
then the transformation is linear in qv, since the transformation considers each
construct in the query once, and in the worst case, each variable may be an
argument in all the intermediate relations. Otherwise, to combine the repetition
of each nested scope with an expression to the left or right of the repetition, we
rewrite the fact and the rules for the repetition, which yields a factor of s in the
complexity. In addition, if a constraint involves non-local variables on both sides
of the repetition, and one chooses to combine with the side that minimizes the
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enumeration during execution, then trying all possible combinations to find the
minimum will incur a factor exponential in s.

Handling methods and object creation. The definition of a method is
transformed into a set of rules for the path-properties expression in the method
body, as described above, except that the relation that captures the entire
method is identified by the fully qualified method name, and is related to the
class where the method is defined. That relation relates the arguments of the
method, including this, to the return value, captured by the query variables of
the method body. A method invocation is transformed into rules that conclude
the relation corresponding to the invocation if the object on which the method is
invoked is an instance of a class that defines the method or inherits the method
from a class that defines it, and if the relation corresponding to the method
holds for the arguments and return value of the invocation.

Objects are created from query results after query evaluation, so object cre-
ation does not need to be transformed into Datalog. While multiple logical object
ids can be given to an object, for efficient search and equality comparison in sub-
sequent queries and other processing, an object must have a unique physical id
for indexing. To achieve this, whenever a new object is to be created and to which
search and equality comparison might be applied, it is matched against existing
objects, and if found, a reference to the existing object is used, as opposed to
creating an identical copy of the existing object.

Example. For example, the query (3) is transformed into a fact
notdefs(x1, x1, x) and the following rules, where the query result is captured
by the relation result:

¬def(x1, x2, x) → notdef(x1, x2, x)
notdefs(x1, x2, x) ∧ notdef(x2, x3, x) → notdefs(x1, x3, x)
notdefs(x1, x2, x) ∧ use(x2, x3, x) → notdefsuse(x1, x3, x)
notdefsuse(start, y, x) → result(y)

(11)

The query (4) is transformed into the same rules except with ¬def in (11)
replaced by ¬deforuse and with two additional rules:

def(x1, x2, x) → deforuse(x1, x2, x)
use(x1, x2, x) → deforuse(x1, x2, x)

5 Generating Specialized Algorithms and Complexity
Formulas

While Datalog programs can be executed in a Prolog system, recursion could
cause nontermination or exponential running time, depending on the order of
rules, due to failure to remember computations already attempted. Polynomial
running time can be ensured by executing Datalog programs in a tabled logic
programming system, such as XSB [24], but it could differ asymptotically, such as
between linear and quadratic, depending on the order of hypotheses in individual
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rules. Also, analyzing the running time requires understanding the execution
engine, including for XSB its sophisticated tabling mechanism, and is nontrivial
even for experts. Additionally, a light-weight program that is specialized to do
only the query at hand and can more easily be plugged into other applications
is often preferable to a heavy-weight generic execution engine.

We summarize the method described in [18] for generating specialized al-
gorithms and complexities from pure Datalog, and extend it here to handle
stratified negation, unsafe rules, and additional constraints.

Generating algorithms and complexities from Datalog. A method for
transforming any set of Datalog rules into an efficient, specialized program with
time and space complexity guarantees has been studied [18]. The method breaks
any given set of rules into rules that have one or two hypotheses and generates an
efficient program that, given any set of facts, computes the meaning of the given
rules and facts. The generated program embodies (1) an incremental algorithm
to consider one fact at a time and (2) a combination of linked and indexed data
structures for the sets of facts and indices used by the algorithm. Overall, each
combination of instantiations of the hypotheses is considered exactly once and
in constant time.

The method also produces formulas for the time and space complexity of the
generated program in terms of data size. Let #p denote the number of facts that
actually hold for relation p. A rule with one hypothesis about relation p is fired
at most #p times; a rule with two hypotheses about relations p1 and p2 is fired
at most

min(#p1 ×#p2.matched, #p2×#p1.matched) (12)

times, where #p2.matched denotes the maximum number of combinations of val-
ues of arguments of p2 that are not shared with p1 for each combination of values
of arguments of p2 that are shared with p1, and vice versa for #p1.matched; if
this number is not known from application domain knowledge, it is bounded by
the product of the domain sizes of unshared arguments as well as by the size
of the relation. The overall time complexity is the sum of the number of firing
times for all rules.

The method applies to pure Datalog, and has been applied successfully to a
number of applications, including regular path queries [19] and parametric reg-
ular path queries [17], grammar constraint simplifications [18], program pointer
analysis [5], and parts of the ANSI standard for role-based access control [4]. A
prototype has also been developed to support the applications and experiments.

Handling extensions. We extend the method above to handle variables as
arguments in facts, additional constraints, and negations, as follows.

Unsafe rules and transformation of repetitions produce facts that contain
variables as arguments. These variables are universally quantified, but we want
to avoid enumerating all possible values of them. So we constrain these variables
using equality during matching as much as possible, and leave them in the facts
when they are not constrained. The complexity calculation is not affected by
this optimization since the formulas are for the worst case.
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For each constraint attached as an additional hypothesis in a rule where vari-
ables in the constraint are bound in other hypotheses, the constraint can simply
be evaluated after all its variables are bound with definite values; constraints
involving primitive arithmetic, comparison, and Boolean operations can be eval-
uated in constant time, so such a constraint does not contribute to the complex-
ity formula. For any constraint that contains variables not bound in the other
hypotheses, the domains of those variables are numerated. This increases the
complexity by a factor linear in the size of the domain for each such variable,
but this number will be minimized by the rewrite described in Section 4 for
transforming constraints.

Negation applied to a vertex or argument produces an inequality constraint,
which is handled as above. Negation applied to a label is transformed into
anylabel plus a negation applied to an edge relation; the edge relation gives
rise to a set of facts, so the negation, i.e., set complement, is easy to compute.
Negation applied to an expression is transformed into a rule with a negated
hypothesis, so we need to handle Datalog with negation, as described below.

Handling negation. We first show that negations in programs transformed
from extended regular expression based queries are always stratified. Note that
recursive definitions are only transformed from repetitions. For each relation that
captures a repetition, the recursive occurrence of the relation in the hypothesis
is not negated, even though the path-properties expression being repeated may
be negated. Therefore, there is no negation in cycles formed by the dependency
of conclusions on hypotheses in recursive rules.

For stratified negation, we generate a program that fully evaluates a relation
before firing any rules that use the negation of the relation. For rules with one
hypothesis, if the hypothesis is negative, the program enumerates all values of
arguments of the corresponding relation excluding values for which the relation
holds; the number of firings is changed from #p for a hypothesis about p to
the product of the domain sizes of all arguments of p. For rules with two hy-
potheses, rather than considering only elements in a relation and elements that
actually matched (corresponding to #p and #p.matched, respectively, in (12)),
for a negated hypothesis, we instead consider all arguments of the relation and
all unshared arguments, respectively; we pick the order of considering the two
hypotheses to give the minimum of two products in a revised form of (12): the
number of firings for each rule is the same as before except with relation size
#p and matched size #p.matched replaced by the product of the domain sizes
of all arguments and the product of the domain sizes of unshared arguments,
respectively.

Example. For example, for the rules and fact in (11) for query (3), the time
complexity is O(#point3 ×#var), where #point is the domain size of the first
two arguments of def and use, and #var is the domain size of the third argu-
ment. It is obtained from the following sum, one summand for each rule:

#point2 ×#var + #point3 ×#var + #use×#point+ #point×#var
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For the rules and fact for query (4), the time complexity formula is the same,
except with two additional summands, #def and #use, for the two additional
rules.

Additional optimizations and extensions are possible. The most important op-
timizations include on-demand, i.e., top-down, computation. In our prototype,
we first apply magic set transformations [6] to the rules and the relation that
captures the entire query, obtained from the previous section; we then implement
the transformed program as described in this section. For query (3), the time
complexity after the optimizations is O((#def+ #use)×#var). Details of the
complexity analysis for on-demand computations using magic set transforma-
tions will be presented in a separate paper. We are currently experimenting with
the prototype. Handling non-stratified negation is a subject for future study.

6 Related Work and Conclusion

A number of early studies relate graph analysis problems with regular expres-
sions or regular-expression-like patterns. For example, Tarjan [28] showed that
regular expressions provide a general approach for path analysis problems, and
he gave efficient algorithms for constructing regular-expression patterns for sev-
eral kinds of path problems [27]. Regular-expression-like patterns have also been
used for static program analysis (e.g., [21]), traversing object graphs in devel-
oping adaptive software (e.g., [22, 16]), etc. Most of these works study specific
domain problems, and none of them provides a generic and efficient framework
for querying complex interrelated objects.

The idea of paths has played an essential role in querying object-oriented
databases [14] and semi-structured data [1]. Object graphs may be cyclic but
previous query languages do not support patterns that can match paths of un-
bounded length; this avoids nontermination. Query languages based on XPath
[29] use some regular-expression-like features that allow path segments to be
skipped but not repeated, and the data are treated as trees, not general graphs.
Conditional XPath [20] extends XPath to allow path segments to be repeated,
and is as expressive as first-order logic when interpreted on ordered trees, but it
does not handle general graphs.

Various forms of regular path queries, allowing general regular-expression-like
patterns over general graphs, have been proposed for querying databases and
semi-structured data [30, 10, 1, 3, 13, 7]. These languages are studied heavily in
terms of expressiveness and query containment, but not on improved ease of ex-
pressing queries or efficient implementations. The implementations are basically
by transforming queries into logic programs and relying on logic programming
engines, such as [23], for query evaluation, but such implementations do not
provide precise complexity guarantees.

Regular path queries with parameters have been studied specially for program
analysis and model checking [11, 17]. Parameters are essential for expressing
correlations of information in different parts of the data, and are needed also
in querying system logs for intrusion detection [26], and querying objects in
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general, as shown in this paper. Drape et al. [12] describe how to code parametric
queries as extended logic programs. Liu et al. [17] give complete algorithms and
data structures for directly and efficiently solving parametric queries with precise
complexity analysis. However, these frameworks do not support a rich data model
that can naturally model objects in object-oriented systems and XML data.

The language in this paper is built on parametric regular path queries [17]
and a rich object model [14], extending the former with vertex ids, variable scop-
ing, methods, etc., and extending the latter with powerful regular-expression like
patterns. It has the same expressiveness as GraphLog [10], but the support of
scoping, and textural flexibilities such as query nesting, make it easier to use,
either by itself or as part of another query language such as [15]. The implemen-
tation is built on a powerful method for generating specialized implementation
with precise complexity guarantees. The transformation to Datalog with limited
extensions helps both in understanding the semantics and in implementation. We
also extend the method in [18] to efficiently handle stratified negation, unsafe
rules, and additional constraints.

Other related works include extensions to OCL path expressions [25] and
trace-based program analysis that uses parameters to correlate information along
paths [9], but they use more sophisticated heavy-weight mechanisms.

Further extensions and improvements to the query framework can be made.
A possible extension is to support universal queries, where properties must hold
on all paths in the graph and where a variable is bound to the same value
on all paths. In terms of implementation, many optimizations can be explored,
including on-demand computation, space reuse, and filtering with constraints.
We are applying the query framework to existing and new problems in program
analysis, model checking, and security policy analysis.
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Abstract. Tabling, or memoization, enables incremental evaluation of logic pro-
grams. When the rules or facts of a program change, we need to recompute only
those results that are affected by the changes. The current algorithms for incre-
mentally maintaining memo tables treat insertion of facts/rules differently from
their deletion. Hence these techniques cannot be directly applied for incremental
evaluation of arbitrary tabled programs, especially those involving Prolog built-
ins such as findall, other aggregation operations, or non-stratified negation. In
this paper, we explore a simpler incremental evaluation algorithm that, based on
the dynamic call graph, invalidates and re-evaluates entire calls. The algorithm
is agnostic to whether a dependency adds or removes answers from tables, and
hence can be applied uniformly to programs with negation, even when the nega-
tion is implicit (as is the case with certain aggregation operations). We find that
the call-based algorithm is very effective in examples where the call dependencies
are largely acyclic (e.g. dynamic programming examples) and is moderately ef-
fective when the dependencies contain independent cyclic components (e.g. data
flow analysis problems). This is the first practical algorithm to handle all legal
tabled logic programs for which incremental evaluation is meaningful.

1 Introduction

Tabled resolution for logic programs [6, 27] alleviates some of the well-known problems
of Prolog, including susceptibility to looping, repeated subcomputations, and unsatis-
factory semantics for negation. Tabled resolution-based systems evaluate programs by
memoizing subgoals (referred to as calls) and their provable instances (referred to as an-
swers) in a set of tables. When resolving a subgoal, if it is present in the call table, then
it is resolved against the answers recorded in the corresponding answer table; otherwise
the subgoal is entered in the call table, and its answers, computed by resolving the sub-
goal against program clauses, are also entered in the answer table. Implementations of
tabling [9, 20, 28, 30, e.g.] have become stable and efficient and practical applications
can be developed by encoding them as high-level logic programs [7, 18].

Tabling enables incremental evaluation: when some facts or rules in a program
change, we can recompute only the results affected by the changes, instead of re-
evaluating the program from scratch. The crucial questions for incremental evaluation
are how to detect which table entries need to change, and how to compute the changes.

P. Van Hentenryck (Ed.): PADL 2006, LNCS 3819, pp. 215–229, 2006.
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Based on earlier works on view maintenance in databases [10, e.g.], we have de-
veloped time- and space-efficient techniques for incremental evaluation of tabled logic
programs [21, 22, 24]. These techniques, based on maintaining dependencies between
answers, use separate algorithms for handling additions and deletions incrementally.
These techniques have been highly effective for incremental evaluation of large definite
logic programs (e.g. points-to analysis for C programs), and have been integrated into
experimental versions1 of the XSB logic programming system [28]. See Section 4 for
detailed discussion on earlier works.

However, these techniques cannot be readily applied to arbitrary tabled logic pro-
grams, especially those that use aggregation and other Prolog built-ins, or have non-
stratified negation. In the presence of non-monotonic operators, it is often difficult to
determine whether the addition of an answer to a table results in addition or deletion of
an answer to another table.

In this paper, we present an incremental evaluation algorithm that is based on call
dependencies instead of answer dependencies, and process insertions as well as dele-
tions using a single method. At a high level, the technique works as follows. When facts
or rules of a program change, we first mark all calls in tables whose answers may be
affected by this change. In the next step we re-evaluate the marked calls. Naive re-
evaluation is often inefficient since the call dependencies are too coarse. Our algorithm
chooses calls to be re-evaluated optimally, and sequences the re-evaluations judiciously
to minimize the number of wasteful computations (see Section 2).

The salient advantages of this technique are:

– The technique can be used on any tabled program, regardless of the use of interme-
diate non-tabled predicates and Prolog built-ins.

– The technique is agnostic to the sign of a dependency— i.e. whether a call depends
negatively or positively on another— and hence can be used without change on
general logic programs: even those with non-stratified negation.

– The re-evaluation phase issues calls in an optimal order, re-evaluating calls only
when needed, and resulting in good performance in practice.

– Call graphs are generally small, and hence the technique scales to large examples.

We also present an extensive experimental evaluation of this new technique (see
Section 3). We present the results for evaluating a wide variety of programs: dynamic
programming examples, points-to analysis for C programs, data flow analysis of C pro-
grams, and validation of XML documents with respect to DTDs. We survey the closely
related prior work in Section 4 and conclude with a discussion on the extensions to the
new incremental evaluation techniques (Section 5).

2 Incremental Evaluation Based on Call Dependencies

Our technical development is based on the SLG resolution [6]; however the definitions
as well as the results of this paper can be ported to other tabled evaluation schemes
as well [9, 30, e.g.]. Although SLG resolution is usually described using pure logic

1 See http://www.lmc.cs.sunysb.edu/˜dsaha/symspt/
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:- table r/2.
r(X,Y) :- e(X,Y).
r(X,Y) :- e(X,Z),

r(Z,Y).

e(1,2).
e(2,3).
e(3,4).
e(3,5).
e(4,2).
e(5,6).
e(6,7).
e(6,8).
e(7,8).

r(8,X) r(7,X)

r(6,X)

e(8,X) e(7,X)

e(6,X)

e(3,X)

r(2,X)

r(3,X)
r(4,X)

r(1,X)

e(2,X)

e(4,X)

e(1,X)

r(5,X)

e(5,X)

(a) (b)

Fig. 1. Example program (a); and called-by graph (b) for evaluating r(1,X)

programs, it has been integrated into Prolog-based systems such as [20, 28] seamlessly
enough to permit programs to mix tabled and non-tabled predicates, use aggregate and
other Prolog builtins, and even use cuts over nontabled predicates. Analogously, the
concepts formally developed below based on SLG resolution can be extended to the
more general class of tabled Prolog programs.

Given a program P and an initial query q, the set of call tables constructed by SLG
resolution is denoted by calls(q, P ). The set of answers computed for a subgoal q over
program P is denoted by ans(q, P ). The set of all answer tables constructed during
evaluation of a query q, denoted by answer tables(q, P ) is given by the collection
{ans(q′, P ) | q′ ∈ calls(q, P )}. In SLG resolution derivations are captured as a SLG
forest, where each tree corresponds to a single call and its associated answer table. Our
incremental algorithm makes a non-trivial change to only one of the operations used
to build the SLG forest: namely, the completion check operation, which determines
whether any more answers can be added to an answer table. The other operations are
either unchanged or are changed trivially to record call dependency information.

We consider incremental evaluation of tabled programs, where facts or rules may be
added or deleted after query evaluation is completed. Each complete query evaluation
is called a run. Between each run, a set of rules in the program may change. We denote
this set by C and partition C into two sets C+ and C− that contain the added and
deleted rules respectively. Given a program P , the changed program P ′ obtained by
applying the changes in C is given by P ′ = P ∪ C+ − C−. Note that our technical
development is general and considers changes to a program’s rules. Facts, which are
rules with empty bodies, naturally become a special case.

Our algorithm is based on tracking dependencies between the calls during query
evaluation. The smallest set of calls that need to be re-examined after a change, defined
formally below, are those whose answer tables are modified by the change.

Definition 1 (Changed Calls). Let P be a program, C = C+ ∪C− be the set of rules
that are changed, and P ′ = P ∪ C+ − C− be the changed program. Let Q be the set
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of calls due to evaluation of some query over P . The set of changed calls, denoted by
changed(P, C) is the set of all calls in Q such that ans(q, P ) �≡ ans(q, P ′).

We assume that all predicates whose definitions are subject to change between runs
are marked as volatile. For instance, in the program in Figure 1(a), edge/2 is a volatile
predicate. In general a volatile predicate may be defined by rules, and may even be
tabled.

Our call-dependency-based incremental evaluation technique is based on a data
structure known as called-by graph, defined below.

Definition 2 (Called-By Graph). The called-by graph due to the evaluation of query
q over program P is a directed graph (V, E) such that (i) V = Vt ∪ Vf where Vt is the
set of tabled subgoals that occur as roots of trees in the SLG forest, and Vf is the set of
selected literals in the SLG forest that unify with the head of some volatile rule; and (ii)
(c1, c2) ∈ E if and only if c1 is a selected subgoal in a tree with c2 as the root (i.e. c1 is
called by c2).

The called-by graph after evaluation of query r(1,X) over the program in Figure 1(a)
is given in Figure 1(b). The graph captures the dependencies between tabled calls and
calls to volatile predicates. It is first generated in the initial (non-incremental) run, and
maintained over subsequent incremental runs. Note that it is the transpose of the subgoal
dependency graph [5] extended with edges from calls to volatile predicates.

The incremental algorithm has two phases. The first is the invalidation phase, where
calls that may be affected by the change are marked as affected.

Definition 3 (Initially Changed Calls). Given a called-by graph G = (V, E) and a
non-empty set C = C+ ∪C− of rules that were changed (inserted or deleted) since the
last run, the set of initially changed calls, denoted by init(G, C) are those v ∈ V such
that v unifies with the head of some rule in C.

Definition 4 (Affected Calls). Given a called-by graph G = (V, E) and a non-empty
set C = C+ ∪ C− of rules that were changed (inserted or deleted) since the last
run, the set of affected calls, denoted by affected(G, C), is the smallest set such that
v ∈ affected(C, G) if

– v ∈ init(G, C), or
– ∃v′ ∈ affected(G, C) such that (v′, v) ∈ E.

The set of affected calls (based on the above definition) can be found by simply travers-
ing the called-by graph starting from the vertices that unify with changed rule heads
(case (i) above). Note that the direction of edges in the called-by graph is from callee to
caller which enables us to compute the affected calls by traversing the called-by graph.

The idea behind the invalidation phase is calls that are not deemed affected are un-
changed by the modification, as formally stated below:

Theorem 1. Let P be an initial program, C = C+ ∪ C− be the set of changed rules,
and P ′ = P∪C+−C− be the changed program. Let G = (V, E) be the called-by graph
for some query over P . Then, every changed call is affected; i.e. changed(P, C) ⊆
affected(G, C).
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Naive Re-evaluation: Theorem 1 means that when some program rules change, it is
sufficient to re-evaluate the set of affected calls. Our naive strategy is remove all table
entries corresponding to the affected calls (i.e. their entries in the call table, as well as
their answer tables) in the invalidation phase. In the second phase, called re-evaluation
phase, we re-do all the affected calls. Note that all affected calls are deleted to ensure
that any answer derived for an affected call is based only on valid information: either
rederived answers of another affected call, or existing answers of an unaffected call.
While deleting the table entries for an affected call, we also remove the corresponding
vertex and the edges incident on it from the called-by graph. Note that the re-evaluation
may generate new vertices and edges in the called-by graph. Thus the called-by graph
itself is (incrementally) modified when processing incremental changes.

For example, consider the deletion of the fact e(3,5) from the program in Fig-
ure 1(a). The invalidation phase identifies the calls e(3,X), r(3,X), r(2,X),
r(4,X) and r(1,X) as affected. Since these calls will be re-evaluated, the edges
incident on these vertices, i.e. e(3, X) → r(3, X), r(5, X) → r(3, X), e(4, X) →
r(4, X), r(4, X) → r(3, X), e(2, X) → r(2, X), r(2, X) → r(4, X), e(1, X) →
r(1, X), and r(2, X) → r(1, X), are deleted from the called-by graph. In the re-
evaluation phase, the call r(1,X) gives rise to calls r(2,X), r(3,X), and r(4,X),
and their answers are subsequently computed. These calls and the corresponding edges
are added (back) to the called-by graph. Note that, answers to unaffected calls can be
found directly from the tables. For example, the call r(3,X) uses already existing an-
swers for e(3,X) and r(5,X); calls such as r(5,X) are unaffected by the deletion
and are not re-evaluated, thereby saving expensive program clause resolution steps.

Optimized Re-evaluation: The set of affected calls over-approximates the set of
changed calls. In many cases, the approximation may be severe and the naive re-
evaluation strategy wastefully re-evaluates unchanged calls. Consider the deletion of
fact e(7,8) from the program Figure 1(a). The invalidation phase identifies the calls
e(7,X), r(7,X), r(6,X), r(5,X), r(3,X), r(2,X), r(4,X), and r(1,X)
as affected. However, the set of changed calls is only e(7,X) and r(7,X), but the
naive strategy also re-evaluates all other affected calls.

We obtain a better approximation of the changed set, called as the recomputed set
defined as follows.

Definition 5 (Recomputed Set). Let P be a program, C = C+ ∪ C− be the set of
changed rules, and P ′ = P ∪ C+ − C− be the changed program. Let G = (V, E) be
the called-by graph for some query q over P . Then, the set of recomputed calls, denoted
by recomputed(G, C), is the smallest set such that c ∈ recomputed(G, C) if

1. c ∈ init(G, C), or
2. there is some c′ such that (c′, c) ∈ E and c′ ∈ changed(P, C), or
3. there is some c′ such that c and c′ are in the same strongly connected component of

G, and c′ ∈ recomputed(G, C).

The recomputed set represents the smallest set of calls that need to be re-evaluated.
The intuition behind this definition follows from the following observations:
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1. Every changed call needs to be re-evaluated.
2. Every call that immediately depends on a changed call needs to be re-evaluated

(even if it itself is not changed). Note that the called-by graph contains no qualita-
tive information on how the change of a call affects another. Only the program has
this information embedded in it, and hence the only way to determine whether or
not such a call changes is to re-evaluate it.

3. If a re-evaluated call is in a SCC, then all calls in that SCC need to be re-evaluated.
For instance, when e(3,5) is deleted from the program in Figure 1(a), e(3,X)
is changed, and hence r(3,X) is recomputed. Note that we cannot simply delete
r(3,X)’s tables are re-evaluate it: since r(4,X) currently contains the answer
X=5, and e(3,4) holds, we will then (incorrectly) conclude that r(3,5) still
holds. Hence, we have to re-evaluate all mutually dependent calls simultaneously
(r(3,X), r(4,X) and r(2,X), in this case).

It follows from the definition that every changed call is also in the recomputed set. It
can also be readily shown that every call in the recomputed set is affected. Formally,

Proposition 2. Let P be a program, C = C+ ∪ C− be the set of changed rules, and
P ′ = P ∪ C+ − C− be the changed program. Let G = (V, E) be the called-by graph
for some query q over P . Then changed(P, C) ⊆ recomputed(G, C) ⊆ affected(G, C).

In optimized re-evaluation we redo the calls in the recomputed set. We need two ba-
sic mechanisms to accomplish this: (a) determine whether a re-evaluated call is changed
or not, and (b) determine SCCs in the called-by graph.

a. Marking Changed Calls: First of all, instead of deleting all the affected tables in
the invalidation phase, we only mark the answers of a recomputed call as (currently)
invalid just before the call is re-evaluated. We do not mark the answers of the affected
calls which are not scheduled for re-evaluation. Invalid answers are ignored when doing
answer clause resolution. With each such recomputed call, we also keep the number of
invalid answers (in a counter called invalid count), initialized to the total number of
answers at the beginning of the re-evaluation phase. Finally, we keep a flag with each
recomputed call (called addl answer) to indicate whether a new answer was added to
this call’s answer table in the re-evaluation phase. During re-evaluation, whenever an
answer is added to a table, if the answer already exists but is invalid, we remove the in-
valid mark and decrement invalid count for the table. If the answer did not exist before,
we add the answer and set addl answer of the call to true. When a call is completely
re-evaluated (at the Completion operation of SLG), we can determine that the call is
changed iff addl answer is true or invalid count is non-zero.

b. Evaluating SCCs: Finding SCCs in the called-by graph is fundamental to evaluat-
ing the recomputed set. Apart from the explicit use of SCC information in its definition,
note that we determine whether or not a call is changed only after completion. Con-
sequently we need to evaluate the calls “bottom-up” through the called-by graph, and
triggering re-evaluations at higher levels only after confirming that the lower-level calls
have changed. This strategy, when applied to acyclic graphs has been shown to be opti-
mal [19] (see Section 4).

Algorithms for finding SCCs typically need an additional pass over the graph. We
now describe a technique to find SCCs without making this additional pass, by slightly
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modifying the traversal used in the invalidation phase. This technique is based on
Kosaraju and Sharir’s SCC computation algorithm [25], which works as follows. To
find SCCs in a graph G, we first traverse G and give post-order numbers to the vertices
in G. We then traverse GT , the transpose of G, starting from the vertex with the highest
post-order number; this traversal builds a spanning tree for one SCC of G. Whenever
the traversal ends, we begin a new traversal from the unvisited vertex with the high-
est post-order number, thereby building a spanning tree for another SCC. This process
continues until all vertices have been visited, enumerating all SCCs of G. The order in
which SCCs are found by the Kosaraju-Sharir algorithm is a topological order in the
SCC-reduced graph of G: if (v1, v2) is an edge in E, then the SCC containing v1 is
found at least as early as the one containing v2.

The Re-Evaluation Algorithm: We now describe a re-evaluation algorithm that im-
plicitly finds SCCs. In the invalidation phase, we traverse the called-by graph and as-
sign a post-order number to each affected call. With each affected call we keep a flag
processed which is initialized to false.

re eval(G, C)
1. ws := init(G, C);
2. while (ws is not empty)
3. remove c, the call with the

highest PO number from ws;
4. call(c);

In SLG’s Completion Op. for call c:
1. if (c.addl answer) or

(c.invalid count > 0)
2. foreach c′ such that (c, c′) ∈ E
3. if not c′.processed
4. add c′ to ws
5. c′.processed := true

Fig. 2. Optimized Re-Evaluation Algorithm

In the re-evaluation phase, shown
in Figure 2, we maintain a sequence of
calls to be re-evaluated in a global data
structure known as the working se-
quence (variable ws in the algorithm).
This sequence is maintained using a
heap data structure, keeping the calls
in the descending order of their post-
order numbers. During re-evaluation,
we pick the call with the highest post-
order number from ws and invoke
the call. Re-evaluation continues until
the working sequence becomes empty.
When the re-evaluation of a call c is
complete, if c has changed, we add all
its immediate successors in the called-
by graph to the working sequence.

Note that, during re-evaluation, if
c2 calls c1 then corresponding edge in

the called by graph is (c1, c2). Thus re-evaluation implicitly traverses the transpose
of the called-by graph. If c1’s table is either unaffected or has been recomputed com-
pletely, then c2 can use the answers from that table. Otherwise, c1 will also be re-
evaluated. This ensures that all calls in an SCC of the called-by graph will be evaluated
simultaneously.

The correctness of the algorithm, stated in the following theorem, can be estab-
lished following the properties of the Kosaraju-Sharir algorithm and the definition of
recomputed set.

Theorem 3. The set of calls picked by the re-evaluation algorithm (line 3 of re eval in
Figure 2) is the same as the recomputed set.
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In the example, when e(7,8) is deleted, the reverse postorder of affected calls
is given by the sequence e(7,X), r(7,X), r(6,X), r(5,X), r(3,X), r(4,X),
r(2,X), r(1,X). The set of initially changed calls is {e(7,X)}. When e(7,X)
is re-evaluated, its answer e(7,8) is removed, and hence we deem the call to have
changed. This causes r(7,X) to be added to the working sequence. When this call is
re-evaluated, it too is deemed to have changed (answer r(7,8) is no longer derivable).
Hence we add r(6,X) to the working sequence. Re-evaluatingr(6,X), we find that it
has not changed. The working sequence is now empty and the re-evaluation is complete.
Thus, among the 8 affected calls, we re-evaluated only 3.

3 Experimental Results

Below we present preliminary results on the performance of the naive and optimized
algorithms on various classes of tabled logic programs. The algorithms were imple-
mented by extending XSB logic programming system [28] (v2.7.1). All measurements
were taken on a PC with 3GHz Pentium 4 processor with 2GB of physical memory
running Linux (RedHat) version 2.6.9. Our implementation, benchmarks, additional
experimental results on simple reachability analysis and push down model checking are
available in [23].
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Fig. 3. Performance on Dynamic Programming
problems

Dynamic Programming: We mea-
sured the performance of our
algorithms on a set of familiar
dynamic programming problems. Sup-
port graph based incremental tech-
niques [24] cannot be directly used
to capture the answer dependencies
in these problems due to the use
of aggregation operations (min, max
etc.). Figure 3 summarizes the rela-
tive time performance of incremental
evaluation (w.r.t. from-scratch evalua-
tion time) averaged over several pos-
sible changes for different dynamic
programming problems: longest com-
mon subsequence (LCS), minimum
edit distance (EDD), and matrix chain
multiplication (MM).

LCS: We evaluated the performance of incremental evaluation on LCS by changing the
character at some position in one of the strings. On average, 50% calls are affected,
and 11% of are changed and 15% are recomputed. Although only 15% of the calls are
re-evaluated by our optimized incremental algorithm, the time taken for re-evaluation
is close 30%. This is due to the overhead of answer clause resolution that our current
implementation performs (from the top-level) even for calls that are not recomputed.
Incremental evaluation of LCS is sensitive to positions of characters in the string that
were changed, as shown by Figure 4.
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Fig. 4. The effectiveness of the optimized algorithm
on LCS

EDD: The solution to EDD is very
similar to that of LCS. The two prob-
lems differ in the number of dependent
calls for each call. Every call in EDD
evaluation is connected to 3 calls in
the call-by graph whereas in LCS each
call is connected to at most 2 calls.
Hence the number of affected calls in
higher in EDD, resulting in higher in-
validation time.
MM: For matrix chain multiplication,
we deleted one matrix from the chain
and measured the incremental and
from-scratch time. For such a change,

all affected calls are recomputed. Hence the optimized algorithm performs no better
than the naive one.
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Fig. 5. Performance on All-Pair Shortest Path

All-Pair Shortest Path: We exper-
imented with encodings of the all-
pair shortest path problem on a di-
rected acyclic graph having 50K nodes
and randomly generated graph hav-
ing 50K edges and 250 nodes (close
to complete graph). We performed
separate experiments with two dif-
ferent logic program encodings (with
left and right recursion, resp.). For
the almost-complete graph, incremen-
tal evaluation algorithms are not effec-
tive since almost all calls are recom-
puted. For DAGs, the right-recursive
version shows better incremental per-
formance due to the availability of non-
trivial call dependency information.

Data Flow Analysis Reaching definition analysis for imperative programs is a well-
known data flow analysis which determines, for each program point, the set of vari-
able definitions (assignments) that may reach that point [2]. We extended the intra-
procedural analysis to an inter-procedural setting using the classical approach of replac-
ing procedure calls with jumps: from the call site to the entry point of the callee, and
from the exit point of the callee to the statement following the call site. The experiments
were performed on various large C programs and for each benchmark 100 random state-
ments (one per incremental run) were chosen for replacement with a skip statement. The
logic programming formulation of data flow analysis uses stratified negation, and the
techniques based on answer dependency [24] cannot be readily used in this case.

Table 1 shows that incremental algorithms takes on average 50% of from-scratch
time although number of affected calls is close to 30%. In all the experiments the in-

:
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Table 1. Data flow analysis; One statement replaced with skip; Time is seconds

Benchmark Non Non-opt. Incr. Opt. Incr. % of calls % of aff. calls
Incr. Re-eval % Re-eval % affected recomputed changed

assembler 5.95 3.60 60.6 3.64 61.2 23.5 85 1
diff 4.55 2.23 49.0 2.24 49.2 30.9 97 1
dixie 1.73 0.96 55.6 0.94 54.4 26.8 95 7
gnugo 4.41 2.38 53.9 2.42 54.8 30.6 99 1
learn 1.29 0.53 40.7 0.54 41.4 26.6 93 9
smail 5.50 2.89 52.4 2.85 51.7 25.4 98 2

validation times were negligible. Closer inspection reveal that for these examples 90%
of the call nodes belong to a few non-trivial SCCs in the called-by graph. The forma-
tion of such large SCCs is due the inter-procedural jumps which introduce cycles even
when the original program had no recursion. Due to the large SCCs, most affected calls
are also recomputed. For example in benchmark learn 93% of the affected calls are
recomputed but only 9% of the affected calls are changed.

Pointer Analysis: We used the call-graph based techniques for the incremental eval-
uation of Anderson’s Points-to analysis [3] encoded as a tabled logic program [22].
We measured the performance of the analyzer on programs taken from C benchmarks
available with PAF [15] compiler suite and SPEC95 benchmarks. The largest of these,
vortex, has more than 65K lines of code.

Table 2 shows the relative performance of naive and optimized incremental algo-
rithms after removal of one (source-level) statement from the benchmark programs,
compared to the from-scratch time. Deleting one source level assignment statement
may delete multiple primitive assignments statements and hence multiple facts. The
results were averaged over 100 randomly chosen deletion of source statements.

Table 2. Performance of naive and optimized algorithms on pointer analysis; Time is seconds

Benchmark Non Naive Incremental Opt. Incremental % of calls % of aff. calls
Incr. Invalid Re-eval % Invalid Re-eval % affected recomputed changed

m88ksim 0.39 0.00 0.04 10.1 0.00 0.03 6.8 1.1 56.4 25.2
vpr 0.65 0.01 0.19 30.8 0.01 0.17 27.8 4.0 57.9 6.1
smail 1.65 0.01 1.18 72.2 0.01 1.19 72.3 6.0 90.3 25.8
twmc 2.22 0.01 0.93 42.5 0.00 0.92 41.7 2.9 85.7 6.0
nethack 0.98 0.01 0.80 82.8 0.00 0.80 82.2 5.6 67.2 12.8
vortex 12.44 0.04 12.10 97.5 0.02 11.35 91.3 5.5 68.3 6.6

Observe that the incremental times for large benchmarks are close to the non-
incremental times. We investigated the vortex program to explain its behavior. Pointer
analysis of vortex makes 68K calls in total of which on average 4K calls are affected.
Close inspection of affected calls revealed the existence of large SCC (consisting 2.7K
nodes) in the call graph. Also about 90% of the time taken by pointer analysis is at-
tributed to the calls in the large SCC. Since the nodes in the SCC are part of the affected
set, re-evaluation takes almost same time as from-scratch analysis. The calls in the SCC
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are also in the recomputed set and hence we do not observe any appreciable difference
in the performance of the optimized algorithm relative to its naive counterpart.

The presence of large SCCs limits the performance of call-graph-based algorithms.
In contrast, techniques based on the finer-grained answer dependencies perform very
well for this program. For instance, the time for incremental evaluation after one source
statement deletion from the vortex benchmark is 0.1%, 15% and 0.5% using techniques
in [21], [22] and [24] resp. Hence it would be useful to incorporate these specialized
techniques into the more general call dependency based algorithm.

XML Validation: We investigated incremental validation of XML documents with
respect to Document Type Definitions (DTD) [4]. The basic validation problem checks
whether a string belongs to a regular language or not.

Table 3. XML Validation; deletion of one ele-
ment; Time is seconds

No. of Non-Incr Naive Re-eval.
Elements Re-eval %
12K 0.18 0.00 1.25
120K 1.89 0.03 1.55
240K 3.79 0.06 1.59
360K 5.67 0.09 1.64
480K 7.63 0.12 1.62
600K 9.60 0.16 1.64

Table 3 shows the result of applying
the naive algorithm for incremental val-
idation of XML documents for different
number of elements (first column). The
example XML documents and DTD de-
scribe a library catalog which contains
zero or more number of books. Each
book contains zero of more number of
authors followed by title. Each author has
a name, zero or more emails and an ad-
dress. We generated XML documents
having 1K–50K books, with up to 3 au-
thors per book and up to 3 email ad-
dresses per author. Each update consists

of deletion of one book element from the chain of book elements of the library. The
number of affected calls is less than 0.01% of total number of calls. The savings due
to incremental evaluation arise from reusing the prior validation of each book element.
Since the number of books is large, it results in considerable savings due to incremental
evaluation. We encoded the validator using left recursion. Since this results in only one
call, we do not see any additional benefits due to the optimized algorithm.

Space Overhead. We measured the space needed for keeping the called-by graph for
sample applications. Note that although the number of nodes in the called-by graph
is bounded by the number of tabled calls, the number of edges can be large. Observe
from Table 4 that space needed for the called-by graph is about 30% of the table space
for most of the applications. For matrix chain multiplication with chain length n, the
number of calls is O(n2) but the number of called-by graph edges is O(n3). This con-
tributes to the large size of the called-by graph compared to its table space. For such
applications, it will be better to not materialize the graph, as described in Section 5.

4 Related Work

The problem of incremental evaluation has been addressed in various fields of research,
viz. view maintenance in databases, model checking, program analysis, logic program-
ming, functional programming, attribute grammar evaluation and AI.
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Table 4. Space usage (in MB) of the incremental algorithm

Application Table Space Called-by Graph Space
Pointer Analysis (vortex) 51.0 13.6
Pointer Analysis (twmc) 18.3 3.5
Matrix Multiplication (chain 200) 4.0 75.0
Longest Common Subsequence (strlen 1000) 168.7 50.1
Minimum Edit Distance (strlen 600) 63.3 21.6
Reaching Definition (diff) 211.0 39.3
XML validation (60K elements) 107.0 13.0

The materialized view maintenance problem has been extensively researched (see,
e.g. [10, 14] for surveys). Most of the works in recursive views maintenance generate
rules that are similar in spirit to those of DRed [11] and are subsumed by DRed (as com-
pared in [10]). DRed computes the dependencies between answers using rules derived
from the original program and does not maintain any dependency structure. The MCI al-
gorithm [26] for incremental model checking maintains a dependency graph analogous
to support graph [21] which keeps track of dependency between answers. Both MCI and
DRed mark an answer in deletion phase if at least one derivation of answer depends on
the deleted fact. In the rederivation phase both algorithms rederive an answer if it can
be derived based on unmarked answers and facts. The DRed-like strategy is also used in
incremental program analysis techniques: e.g. Yur et. al.’s algorithm to update points-to
analysis information [29] and Pollock and Soffa’s incremental iterative algorithm us-
ing change classification and reinitialization for bitvector problems [16]. They employ
a two phase solution where the exaggerate and adjust phases correspond to DRed’s
delete and rederive phases respectively. Our primary-support-based algorithm [21] im-
proved on the DRed strategy by significantly reducing the need to propagate deletions.
In [22] we generalize the idea of primary support, identifying multiple acyclic supports
for an answer, all of which should be deleted before the answer can be marked, and also
gave an algorithm that uses only partial support information to bound space overheads.
In [24] we presented a data structure to store full support graphs symbolically, making
the technique scalable in terms of both time and space to large applications.

In contrast to the algorithm presented in this paper, the above techniques cannot be
readily applied to arbitrary tabled logic programs, especially those that use aggregation
and other Prolog built-ins, or have non-stratified negation. However, when applicable,
the fine-grained dependency information (i.e. between answers) used by these algo-
rithms will enable them to outperform the call-graph based algorithms.

The idea of recording the evaluation process as a graph and using a topological or-
der to guide incremental change propagation has been used in various fields of attribute
grammar, functional programming and logic programming. The dependency graphs
used in [19] for attribute grammar evaluation is static and whereas the augmented de-
pendency graph (ADG) used in [1] for recording dependencies between input and out-
put values in the execution of pure functional programs is dynamic. In both algorithms
the graphs are acyclic, which restricts their use in logic programming.

Incremental algorithms for the re-analysis of constraint logic programs [12, 13, 17]
are perhaps closest to our work. These algorithms, intended for program analysis, use
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call dependencies to propagate changes in the analysis information due to insertion and
deletion of rules. A bottom-up deletion algorithm using a static predicate dependency
graph was presented in [13]. A SCC-reduced dynamic call graph based algorithm was
presented in [12] to handle arbitrary changes. Our algorithm is very similar to these in
terms of using call graphs for change propagation. Notable differences are as follows.
Firstly, through the use of post-order numbers, we perform re-evaluation without ex-
plicitly computing the SCCs whereas they use a separate SCC maintenance phase. Sec-
ondly, we use full-fledged tabled resolution to recompute answers and hence can handle
prolog builtins, aggregates and non-stratified negation. In contrast, the other algorithms
keep track of the direction of a change (i.e. insert or delete) and hence are difficult to
generalize for arbitrary programs (e.g. those with findall). Processing of insertion of
rules was improved in [17] by making the non-incremental algorithm SCC-preserving
without explicitly computing the SCCs by using a specialized event scheduling strategy.
We obtain the same effect by using XSB’s local scheduling [8].

5 Discussion

In this section we discuss possible extensions to the algorithms presented in Section 2.

Lazy re-evaluation: The algorithms presented in Section 2 refreshes all answer ta-
bles such that after each incremental phase the set of answers is sound and complete
with respect to the changed program. Certain applications (e.g. ontology management
systems), access tables through a graphical user interface, and access some or all of
the answers only when required. In such cases, it will be better to re-evaluate a call
only on demand. This can be done by keeping a subgoal dependency graph to prop-
agate demand top-down, while keeping the called-by graph to perform re-evaluations
bottom-up. Since the invalidation phase takes very little time, it can still be done eagerly.
That will ensure that the optimized algorithm can still be used in order to re-evaluate
only those calls in the recomputed set that are also demanded.

Insertion for Definite Logic Programs: The algorithm presented here re-evaluates
a call by generating all its answers using program clause resolution. When the direc-
tion of the change (i.e. whether it is an addition, deletion or both) is known, we can
do better. If the change made is an addition and the program has no negation, we can
derive a new program that computes these changes efficiently. The rules of the new pro-
gram are called “delta rules” and are derived by finite-differencing the original definite
program [11, 21]. This has a potential to significantly improve incremental evaluation
times. For example, a single statement insertion using delta rules takes on average 8%
of from-scratch time for pointer analysis in vortex benchmark whereas it takes 90%
of from-scratch time when the affected calls are completely re-evaluated. While it is
relatively straightforward to use the “delta rules” program for incrementally process-
ing additions for predicates without negation, light-weight re-evaluation techniques for
other kinds of changes and for general logic programs remains an open problem.

Mixed Strategy: In [24] we described a space efficient technique for storing an-
swer dependencies in the form of symbolic support graph. Symbolic support graph
based deletion algorithm is extremely efficient in practice— taking less than 5% of
from-scratch time in all the applications we have tested. We can combine these two
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techniques, keeping call dependencies in general but keeping symbolic support graphs
whenever possible to efficiently process deletions.

Non-materialized called-by graph: Although the call dependencies are typically
smaller than answer dependencies, and the number of calls is bounded by table space,
the called-by graph itself may take more space than the tables (e.g. the matrix chain
multiplication example in Section 3). It is hence worth exploring whether we can avoid
storing the edges of the called-by graph, and instead compute them on the fly. It is
relatively easy to derive the called-by relation for a given definite logic program. For
instance, from every rule of the form p :− q1, q2, . . . , qn we can derive “called-by” rules
such as called by(qi, p) :− q1, q2, . . . , qi−1. While the computed called-by relation
is a space-efficient alternative to storing large called-by graphs, it is not clear whether
such rules can be derived for arbitrary logic programs (especially those employing im-
pure constructs such as cuts).

Summary: We presented an incremental evaluation algorithm based on call depen-
dencies that can handle tabled logic programs with negation, aggregation and Prolog
builtins. Experiments show that the general algorithm is useful although not as effec-
tive as the (more restricted) answer-dependency-based techniques. The algorithm iden-
tifies a small set of calls to be re-evaluated and invokes them in a particular order to
ensure optimality. The actual re-evaluation itself is performed rather naively, by (effec-
tively) removing all answers from a table to be re-evaluated and using program clause
resolution to restore the answer table. More sophisticated techniques that optimize the
re-evaluation itself are of significant interest. Our experience with this algorithm shows
that programs written for efficient tabled evaluation may not be most suited for efficient
incremental evaluation too. Developing a methodology to write efficient incremental
programs (analogous to recursion transformations and supplementary tabling for tabled
programs) is an important avenue of future research.
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